A forest growth and production model under climate fluctuations

Authors

DOI:

https://doi.org/10.4336/2025.pfb.45e202502328

Keywords:

Forecasting, Probabilistic distribution, Climate variability

Abstract

Forest growth and production models are essential for predicting stand dynamics and assisting in management planning. However, the accuracy of these estimates is influenced by several factors, mainly climate fluctuations. This study evaluated the performance of two probabilistic distribution models with predict of parameters, the second being an improved version of the first, incorporating a new approach for projecting tree height and associating the errors found with climate variables. Data from continuous forest inventories of Khaya grandifoliola seminal monoculture and Eucalyptus urophylla x Eucalyptus grandis cv. GG100 rows were used in two crop-livestock-forest integration systems (ILPF), located in Sete Lagoas, Minas Gerais State, Brazil. The validation of the projections was performed using the Kolmogorov-Smirnov test and the calculation of the percentage error of the projected volume. The results indicate that climate fluctuations interfere with the accuracy of the models. The improved model systematically reduced the estimation errors, improving the accuracy of the projections.

Downloads

Download data is not yet available.

Author Biographies

Thomaz Corrêa e Castro da Costa, Embrapa Maize & Sorghum

Miguel Marques Gontijo Neto, Embrapa Maize & Sorghum

Mônica Matoso Campanha, Embrapa Maize & Sorghum

Talvane Coelho, Federal University of São João del-Rei

References

Allen, R. G. et al. (ed.). The ASCE standardized reference evapotranspiration equation. Reston: American Society of Civil Engineers, 2005. DOI: https://doi.org/10.1061/9780784408056

Azevedo, G. B. et al. Modelagem da produção em nível de povoamento e por distribuição diamétrica em plantios de eucalipto. Scientia Florestalis, v. 44, n. 110, p. 383-392, 2016. DOI: https://doi.org/10.18671/scifor.v44n110.11

Berger, R. W. & Lawrence, K. Estimating Weibull parameters by linear and nonlinear regression. Technometrics, v. 16, n. 4, p. 617-619, 1974. DOI: https://doi.org/10.1080/00401706.1974.10489245

Campos, B. P. F. et al. Predição da altura total de árvores em plantios de diferentes espécies por meio de redes neurais artificiais. Pesquisa Florestal Brasileira, v. 36, n. 88, p. 375-385, 2016. DOI: https://doi.org/10.4336/2016.pfb.36.88.1166

Campos, J. C. C. & Leite, H. G. Modelos de distribuição de diâmetros. In: Campos, J. C. C. & Leite, H. G. Mensuração florestal: perguntas e respostas. 5. ed. Viçosa, MG: UFV, 2017. cap. 4, 548 p.

Cao, Q. V. Predicting parameters of a Weibull function for modeling diameter distribution. Forest Science, v. 50, n. 5, p. 682-685, 2004. DOI: https://doi.org/10.1093/forestscience/50.5.682

Costa, T. C. C. et al. CalcMadeira: cálculo de peças de madeira roliça e serrada. In: Oliveira, R. J. de (org.). Engenharia florestal: desafios, limites e potencialidade. Rio de Janeiro: Científica Digital, 2020. 898 p. DOI: https://doi.org/10.37885/200600517

Costa, T. C. C. & Guimarães, A. L. Estimation of the Weibull distribution form parameter as a function of the scale parameter by the percentile method. Floresta, v. 52, n. 4, p. 531-540, 2022. DOI: https://doi.org/10.5380/rf.v52i4.84893

Costa, T. C. C. et al. Algorithm for the projection of forest growth and production. Floresta, v. 53, n. 1, p. 99-109, 2023. DOI: https://doi.org/10.5380/rf.v53i1.85562

Gschwantner, T. et al. Plot level estimation procedures and models. In: Gasparini, P. et al. (ed.). Italian National Forest Inventory: methods and results of the third survey. Cham: Springer, 2022. (Springer Tracts in Civil Engineering).

Gupta, R. & Sharma, L. K. The process-based forest growth model 3-PG for use in forest management: a review. Ecological Modelling, v. 397, p. 55-73, 2019. DOI: https://doi.org/10.1016/j.ecolmodel.2019.01.007

Houghton, D. R. & Gregoire, T. G. Minimum subsamples of tree heights for accurate estimation of Loblolly Pine plot volume. Southern Journal of Applied Forestry, v. 17, n. 3, p. 124-129, 1993. DOI: https://doi.org/10.1093/sjaf/17.3.124

Hudak, D. & Tiryakioǧlu, M. On estimating percentiles of the weibull distribution by the linear regression method. Journal of Materials Science, v. 44, p. 1959-1964, 2009. DOI: https://doi.org/10.1007/s10853-009-3306-1

Leite, H. G. et al. Comparação entre predição e projeção da distribuição de diâmetros de povoamentos de eucalipto submetidos a desbastes. Revista Árvore, v. 37, n. 2, p. 321-328, 2013. DOI: https://doi.org/10.1590/S0100-67622013000200013

Lima, R. A. F. et al. Modeling tree diameter distributions in natural forests: an evaluation of 10 statistical models. Forest Science, v. 61, n. 2, p. 320-327, 2015. DOI: https://doi.org/10.5849/forsci.14-070

Miguel, E. P. et al. Using the Weibull function for prognosis of yield by diameter class in Eucaliptus urophylla stands. Cerne, v. 16, n. 1, p. 94-104, 2010. DOI: https://doi.org/10.1590/S0104-77602010000100011

Miranda, R. et al. Prediction system for diameter distribution and wood production of eucalyptus. Floresta e Ambiente, v. 25, n. 3, e20160548, 2018. DOI: https://doi.org/10.1590/2179-8087.054816

Nicoletti, M. F. et al. Exatidão de dendrômetros ópticos para determinação de volume de árvores em pé. Ciência Florestal, v. 25, n. 2, p. 395-404, 2015. DOI: https://doi.org/10.5902/1980509818458

Ogana, F. N. et al. Tree size distribution modelling: moving from complexity to finite mixture. Journal of Forest and Environmental Science, v. 36, n. 1, p. 7-16, 2020.

Oliveira, C. M. M. et al. Modelo 3-PG na previsão do potencial produtivo de áreas para plantios comerciais de Eucalyptus spp. Ciência Florestal, v. 28, n. 1, p. 249-262, 2018. DOI: https://doi.org/10.5902/1980509831580

Oliveira, E. B. Softwares para manejo e análise econômica de plantações florestais. Colombo: Embrapa Florestas, 2011. 70 p. (Embrapa Florestas. Documentos, 2016).

Orellana, E. et al. Métodos de ajuste e procedimentos de seleção de funções probabilísticas para modelar a distribuição diamétrica em floresta nativa de araucária. Ciência Florestal, v. 27, n. 3, p. 969-980, 2017. DOI: https://doi.org/10.5902/1980509828668

Pogoda, P. et al. Modeling diameter distribution of Black Alder (Alnus glutinosa (L.) Gaertn.) stands in Poland. Forests, v. 10, n. 412, 2019. DOI: https://doi.org/10.3390/f10050412

Poudel, K. P. & Cao, Q. V. Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. Forest Science, v. 59, n. 2, p. 243-252, 2013. DOI: https://doi.org/10.5849/forsci.12-001

Pretzsch, H. et al. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature Communications, v. 5, p. 1-10, 2014. DOI: https://doi.org/10.1038/ncomms5967

Prodan, M. et al. Mensura forestal. 3. ed. San José: IICA. 1997.

Retslaff, F. A. S. et al. Prognose do crescimento e da produção em classes de diâmetro para povoamentos desbastados de Eucalyptus grandis no sul do Brasil. Revista Árvore, v. 36, n. 4, p. 719-732, 2012. DOI: https://doi.org/10.1590/S0100-67622012000400013

Ribeiro, A. et al. Estrutura da distribuição diamétrica em plantio experimental de candeia (Eremanthus erythropappus (dc.) Macleish). Ciência Florestal, v. 24, n. 4, p. 1055-1065, 2014. DOI: https://doi.org/10.5902/1980509816618

Rosa, S. L. K. et al. Dados da Nasa Power e de estações meteorológicas de superfície em diferentes climas na estimativa da evapotranspiração de referência. Pesquisa Agropecuária Brasileira, v. 58, e03261, 2023. DOI: https://doi.org/10.1590/s1678-3921.pab2023.v58.03261

Sanquetta, C. R. et al. Inventários florestais: planejamento e execução. 3 ed. [S.l.]: Multi-Graphic, 2014. 406 p.

Silva, L. D. et al. O clima no Bioma Cerrado. In: Silva, L. D. et al. (org.). Sistema de informações para planejamento florestal no cerrado brasileiro. Piracicaba: ESALQ/USP, 2021. v. 2, cap. 2, p. 12-29.

Subedi, N., & Sharma, M. Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada. Global Change Biology, v. 19, n. 2, p. 505-516, 2013. DOI: https://doi.org/10.1111/gcb.12033

Thornthwaite, C. W. & Mather, J. R. The water balance. Publications in Climatology, v. 8, n. 1, p. 1-104, 1955.

Published

2025-09-08

How to Cite

COSTA, Thomaz Corrêa e Castro da; GONTIJO NETO, Miguel Marques; CAMPANHA, Mônica Matoso; COELHO, Talvane. A forest growth and production model under climate fluctuations. Pesquisa Florestal Brasileira, [S. l.], v. 45, 2025. DOI: 10.4336/2025.pfb.45e202502328. Disponível em: https://pfb.sede.embrapa.br/pfb/article/view/2328. Acesso em: 14 jan. 2026.

Issue

Section

Articles