Modelos de crescimento não linear para espécies de árvores usadas na restauração florestal no Arco do Desmatamento da Amazônia brasileira

Autores

DOI:

https://doi.org/10.4336/2022.pfb.42e202102180

Palavras-chave:

Florestas plantadas, Logistic analysis, Modelling

Resumo

A grande quantidade de áreas degradadas e o potencial produtivo das reservas legais no Brasil tornam a restauração uma demanda ambiental e oportunidade comercial. Modelamos o crescimento do diâmetro em função da idade de oito espécies de árvores em plantações de recomposição na Amazônia brasileira. A partir de 14 anos de dados de inventário florestal anual, testamos variações da função logística: logística simples, logística com covariante (área da planta na época do plantio), logística com efeito aleatório, logística com efeito aleatório e covariante. As espécies Schizolobium parahyba var. amazonicum, Tectona grandis e Simarouba amara apresentaram as maiores taxas de crescimento, enquanto Cordia alliodora, Cedrela odorata e três espécies do gênero Handroanthus apresentaram crescimento mais lento. Os ganhos com o uso da covariante na modelagem foram pequenos para modelos de efeitos fixos e mistos. Os ganhos com a inclusão do efeito aleatório foram substanciais. Os modelos de efeitos mistos tiveram o melhor desempenho na modelagem do crescimento das espécies. Nossos resultados fornecem subsídios para uma visão crítica sobre os critérios, possibilidades de recomposição e práticas de manejo de áreas degradadas em reservas legais na Amazônia. Uma análise econômica é necessária para garantir a viabilidade da exploração sustentável dessas áreas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Marcela de Castro Nunes Santos Terra , Universidade Federal de Lavras, Departamento de Ciências Florestais

http://lattes.cnpq.br/9848031991949790

Marcos Gabriel Braz de Lima, Universidade Federal de Lavras, Departamento de Ciências Florestais

In memoriam

Juliano de Paulo dos Santos, Universidade Federal de Lavras, Departamento de Ciências Florestais

http://lattes.cnpq.br/9745781036617668

Natielle Gomes Cordeiro, Universidade Federal de Lavras, Departamento de Ciências Florestais

http://lattes.cnpq.br/3547448411119619

Kelly Marianne Guimarães Pereira, Universidade Federal de Lavras, Departamento de Ecologia e Conservação

http://lattes.cnpq.br/0442399942131128

Daniel Dantas, Universidade Federal de Lavras, Departamento de Ciências Florestais

Natalino Calegario, Universidade Federal de Lavras, Departamento de Ciências Florestais

http://lattes.cnpq.br/8579386263259869

Soraya Alvarenga Botelho, Universidade Federal de Lavras, Departamento de Ciências Florestais

http://lattes.cnpq.br/0652868532221754

Referências

Alvares, C. A. et al. Köppen´s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2014. https://doi.org/10.1127/0941-2948/2013/0507. DOI: https://doi.org/10.1127/0941-2948/2013/0507

Alves, J. de A. et al. Equações hipsométricas para Toona ciliata com inclusão de covariantes. Ciência Florestal, v. 27, n. 2, p. 581-595, 2017. https://doi.org/10.5902/1980509827738. DOI: https://doi.org/10.5902/1980509827738

Andrade, V. H. F. et al. Growth models for two commercial tree species in upland forests of the Southern Brazilian Amazon. Forest Ecology and Management, v. 438, p. 215-223, 2019. https://doi.org/10.1016/j.foreco.2019.02.030. DOI: https://doi.org/10.1016/j.foreco.2019.02.030

Arruda, C. R. et al. Fichário dos plantios da Fazenda São Nicolau. 2010. 246 p.

Bartelt-Ryser, J. et al. Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspectives in Plant Ecology, Evolution and Systematics, v. 7, n. 1, p. 27-49, 2005. https://doi.org/10.1016/j.ppees.2004.11.002. DOI: https://doi.org/10.1016/j.ppees.2004.11.002

Batista, A. et al. Modeling tree diameter growth of Bertholletia excelsa Bonpl. in the Brazilian Amazon. Forests, v. 11, n. 12, p. 1309, 2020. https://doi.org/10.3390/f11121309. DOI: https://doi.org/10.3390/f11121309

Braz, E. M. et al. Criteria to be considered to achieve a sustainable second cycle in Amazon Forest. Pesquisa Florestal Brasileira, v. 35, n. 83, p. 209-225, 2015. https://doi.org/10.4336/2015.pfb.35.83.941. DOI: https://doi.org/10.4336/2015.pfb.35.83.941

Borges, H. N. B. et al. (ed.). Flora arbórea de Mato Grosso: tipologias e suas espécies. Cuiabá: Entrelinhas, 2014. 255 p.

Brancalion, P. H. S. et al. Análise crítica da Lei de Proteção da Vegetação Nativa (2012), que substituiu o antigo Código Florestal: atualizações e ações em curso. Natureza & Conservação, v. 14, supp. 1, p. e1-e16, 2016. https://doi.org/10.1016/j.ncon.2016.03.004. DOI: https://doi.org/10.1016/j.ncon.2016.03.004

Brasil. Decreto nº 8.972, de 23 janeiro de 2017. Institui a Política Nacional de Recuperação da Vegetação Nativa. Available from: http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2017/decreto/d8972.htm. Access on: Nov. 20, 2020.

Brasil. Lei n° 12.651, de 25 de maio de 2012. Dispõe sobre a proteção da vegetação nativa [...] e dá outras providências. Available from: http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei/L12651compilado.htm. Access on: Jan 11, 2021. Publicada originalmente no Diário Oficial [da] República Federativa do Brasil, Brasília, DF, em 28 maio, 2012.

Brienen, R. J. W. & Zuidema, P. A. Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. Journal of Ecology, v. 94, n. 2, p. 481-493, 2006. https://doi.org/10.1111/j.1365-2745.2005.01080.x. DOI: https://doi.org/10.1111/j.1365-2745.2005.01080.x

Calegario, N. et al. Estimativa do crescimento de povoamentos de Eucalyptus baseada na teoria dos modelos não lineares em multinível de efeito misto. Ciência Florestal, v. 15, n. 3, p. 285-292, 2005. https://doi.org/10.5902/198050981866. DOI: https://doi.org/10.5902/198050981866

Carvalho, W. D. et al. Deforestation control in the Brazilian Amazon: a conservation struggle being lost as agreements and regulations are subverted and bypassed. Perspectives in Ecology and Conservation, v. 17, n. 3, p. 122-130, 2019. https://doi.org/10.1016/j.pecon.2019.06.002. DOI: https://doi.org/10.1016/j.pecon.2019.06.002

Clark, D. A. & Clark, D. B. Getting to the canopy: tree height growth in a neotropical rain forest. Ecology, v. 82, n. 5, p. 1460-1472, 2001. https://doi.org/10.1890/0012-9658(2001)082[1460:GTTCTH]2.0.CO;2. DOI: https://doi.org/10.1890/0012-9658(2001)082[1460:GTTCTH]2.0.CO;2

Cordeiro, I. M. C. C. et al. Avaliação de plantios de Paricá (Schizolobum parahyba var. amazonicum (Huber Ex Ducke) Barneby de diferentes idades e sistemas de cultivo no município de Aurora do Pará - PA (Brasil). Ciência Florestal, v. 25, n. 3, p. 679-687, 2015. https://doi.org/10.5902/1980509819618. DOI: https://doi.org/10.5902/1980509819618

Cunha, T. A. da & Finger, C. A. G. Competição assimétrica e o incremento diamétrico de árvores individuais de Cedrela odorata L. na Amazônia ocidental. Acta Amazonica, v. 43, n. 1, p. 9-18, 2013. https://doi.org/10.1590/S0044-59672013000100002. DOI: https://doi.org/10.1590/S0044-59672013000100002

Cunha, T. A. da et al. Tree basal area increment models for Cedrela, Amburana, Copaifera and Swietenia growing in the Amazon rain forests. Forest Ecology and Management, v. 365, p. 174-183, 2016. https://doi.org/10.1016/j.foreco.2015.12.031. DOI: https://doi.org/10.1016/j.foreco.2015.12.031

Dünisch, O. et al. Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees, v. 17, p. 244-250, 2003. https://doi.org/10.1007/s00468-002-0230-2. DOI: https://doi.org/10.1007/s00468-002-0230-2

Free, C. M. et al. Management implications of long-term tree growth and mortality rates: a modeling study of big-leaf mahogany (Swietenia macrophylla) in the Brazilian Amazon. Forest Ecology and Management, v. 330, p. 46-54, 2014. https://doi.org/10.1016/j.foreco.2014.05.057. DOI: https://doi.org/10.1016/j.foreco.2014.05.057

Gollnow, F. et al. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy, v. 78, p. 377-385, 2018. https://doi.org/10.1016/j.landusepol.2018.07.010. DOI: https://doi.org/10.1016/j.landusepol.2018.07.010

Gomes, J. M. et al. Schizolobium parahyba var. Amazonicum (Huber ex Ducke) Barneby pode ser utilizada em enriquecimento de clareiras de exploração florestal na Amazônia. Ciência Florestal, v. 29, n. 1, p. 417-424, 2019. https://doi.org/10.5902/198050984793. DOI: https://doi.org/10.5902/198050984793

Healey, S. P. & Gara, R. I. The effect of a teak (Tectona grandis) plantation on the establishment of native species in an abandoned pasture in Costa Rica. Forest Ecology and Management, v. 176, n. 1-3, p. 497-507, 2003. https://doi.org/10.1016/S0378-1127(02)00235-9. DOI: https://doi.org/10.1016/S0378-1127(02)00235-9

IBÁ. Industria Brasileira de Árvores. Relatório Anual 2017. Brasília, DF, 2017. Available from: https://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf. Access on: July 20, 2020.

Imazon. Instituto Homem e Meio Ambiente da Amazônia. Boletim Sistema de Alerta de Desmatamento, jan. 2019. Available from: https://imazon.org.br/publicacoes/boletim-do-desmatamento-da-amazonia-legal-janeiro-2019-sad/. Access on: May 10, 2020.

Inmet. Instituto Nacional de Meteorologia. BDMEP: Banco de Dados Meteorológicos para Ensino e Pesquisa. 2021. Available from: https://portal.inmet.gov.br/servicos/bdmep-dados-hist%C3%B3ricos. Access on: July 14, 2021.

Kahriman, A. et al. A novel approach to selecting a competition index: the effect of competition on individual tree diameter growth of Calabrian pine. Canadian Journal of Forest Research, v. 48, n. 10, p. 1217-1226, 2018. https://doi.org/10.1139/cjfr-2018-0092. DOI: https://doi.org/10.1139/cjfr-2018-0092

Kuehne, C. et al. Comparing performance of contrasting distance-independent and distance-dependent competition metrics in predicting individual tree diameter increment and survival within structurally-heterogeneous, mixed-species forests of Northeastern United States. Forest Ecology and Management, v. 433, p. 205-216, 2019. https://doi.org/10.1016/j.foreco.2018.11.002. DOI: https://doi.org/10.1016/j.foreco.2018.11.002

Maneschy, R. Q. et al. Viabilidade econômica de sistemas silvipastoris com Schizolobium parahyba var. amazonicum e Tectona grandis no Pará. Pesquisa Florestal Brasileira, v. 60, p. 49-56, 2009. DOI: https://doi.org/10.4336/2009.pfb.60.49

Marçais, B. et al. Estimation of Ash mortality induced by Hymenoscyphus fraxineus in France and Belgium. Baltic Forestry, v. 23, n. 1, p. 159-167, 2017.

Mendonça, A. R. de et al. Growth and yield models for eucalyptus stands obtained by differential equations. Scientia Agricola, v. 74, n. 5, p. 364-370, 2017. https://doi.org/10.1590/1678-992x-2016-0035. DOI: https://doi.org/10.1590/1678-992x-2016-0035

Naji, H. R. et al. Effect of intensive planting density on tree growth, wood density and fiber properties of maple (Acer velutinum Boiss.). IForest: Biogeosciences and Forestry, v. 9, n. 2, p. 325-329, 2015. https://doi.org/10.3832/ifor1333-008. DOI: https://doi.org/10.3832/ifor1333-008

Noronha, J. C. et al. Update das espécies de anuros da Fazenda São Nicolau, Mato Grosso, Brasil. Scientific Electronic Archives, v. 8, n. 1, p. 15-25, 2015.

Pinedo-Vasquez, M. et al. Post-Boom logging in Amazonia. Human Ecology, v. 29, n. 2, p. 219-239, 2001. https://doi.org/10.1023/A:1011064031078. DOI: https://doi.org/10.1023/A:1011064031078

Pinheiro, J. Package "˜nlme´: linear and nonlinear mixed effects models description. 2019. Available from: https://cran.r-project.org/web/packages/nlme/nlme.pdf. Access on: Aug. 2, 2020.

Pödör, Z. et al. Application of sigmoid models for growth investigations of forest trees. In: van Do, T. et al. (ed.). Advanced computational methods for knowledge engineering: Proceedings of the 2nd International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2014). New York: Springer, 2014. p. 353-364. DOI: https://doi.org/10.1007/978-3-319-06569-4_26

Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000-2017. Nature Sustainability, v. 2, p. 764-772, 2019. https://doi.org/10.1038/s41893-019-0336-9. DOI: https://doi.org/10.1038/s41893-019-0336-9

R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2019.

Ryan, M. G. Woody-tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits. Oecologia, v. 100, n. 3, p. 213-220, 1994. https://doi.org/10.1007/BF00316947. DOI: https://doi.org/10.1007/BF00316947

Santos, H. G. dos et al. (ed.). Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018. 353 p.

Scolforo, H. F. et al. A new model of tropical tree diameter growth rate and its application to identify fast-growing native tree species. Forest Ecology and Management, v. 400, p. 578-586, 2017. https://doi.org/10.1016/j.foreco.2017.06.048. DOI: https://doi.org/10.1016/j.foreco.2017.06.048

Silva, R. P. da, et al. Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil. Forest Ecology and Management, v. 166, n. 1-3, p. 295-301, 2002. https://doi.org/10.1016/s0378-1127(01)00678-8. DOI: https://doi.org/10.1016/S0378-1127(01)00678-8

Somarriba, E. & Beer, J. Dimensiones, volumenes y crecimiento de Cordia alliodora en sistemas agroforestales. Turrialba: CATIE. 1986. (Boletín técnico, 16).

Souza, A. P. et al. Classificação climática e balanço hídrico climatológico no estado de Mato Grosso. Nativa, v. 1, n. 1, p. 34-43, 2013. https://doi.org/10.14583/2318-7670.v01n01a07. DOI: https://doi.org/10.14583/2318-7670.v01n01a07

Spiess, A.-N. Package "qpcR": Modelling and Analysis of Real-Time PCR Data. 2018. Available from: https://cran.r-project.org/web/packages/qpcR/qpcR.pdf. Access on: Aug. 2, 2020.

Tewari, D. N. A monograph on teak (Tectona grandis Linn. f.). Dehra Dun: International Book Distributors, 1992.

Toledo, M. et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, v. 99, n. 1, p. 254-264, 2010. https://doi.org/10.1111/j.1365-2745.2010.01741.x. DOI: https://doi.org/10.1111/j.1365-2745.2010.01741.x

Tonini, H. et al. Crescimento da Teca (Tectona grandis) em reflorestamento na Amazônia Setentrional. Pesquisa Florestal Brasileira, v. 59, p. 5-14, 2009. https://doi.org/10.4336/2009.pfb.59.05. DOI: https://doi.org/10.4336/2009.pfb.59.05

Verhulst, P. F. Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathématique et physique, v. 10, p. 113-121, 1838.

Vieira, S. B. Cedrela odorata L. tem potencial para ser utilizada na silvicultura pós-colheita na Amazônia brasileira? Ciência Florestal, v. 28, n. 3, p. 1230-1238, 2018. https://doi.org/10.5902/1980509833361. DOI: https://doi.org/10.5902/1980509833361

Wickham, H. Package "tidyverse": Easily Install and Load the "Tidyverse". 2017. Available from: https://cran.r-project.org/web/packages/tidyverse/tidyverse.pdf. Access on: 10 Ago 2020. DOI: https://doi.org/10.32614/CRAN.package.tidyverse

Zanetti, E. A. & Souza, M. de C. Serviço Nacional de Carbono Rural da Amazônia (SNCRA). Inclusão Social, v. 12, n. 1, p. 95-102, 2018.

Zhang, J-T. & Dong, Y. Factors affecting species diversity of plant communities and the restoration process in the loess area of China. Ecological Engineering, v. 36, n. 3, p. 345-350, 2010. https://doi.org/10.1016/j.ecoleng.2009.04.001. DOI: https://doi.org/10.1016/j.ecoleng.2009.04.001

Zobel, J. M. et al. Comparison of Forest Inventory and Analysis surveys, basal area models, and fitting methods for the aspen forest type in Minnesota. Forest Ecology and Management, v. 262, n. 2, p. 188-194, 2011. https://doi.org/10.1016/j.foreco.2011.03.022. DOI: https://doi.org/10.1016/j.foreco.2011.03.022

Downloads

Publicado

14-12-2022

Como Citar

TERRA , Marcela de Castro Nunes Santos; LIMA, Marcos Gabriel Braz de; SANTOS, Juliano de Paulo dos; CORDEIRO, Natielle Gomes; PEREIRA, Kelly Marianne Guimarães; DANTAS, Daniel; CALEGARIO, Natalino; BOTELHO, Soraya Alvarenga. Modelos de crescimento não linear para espécies de árvores usadas na restauração florestal no Arco do Desmatamento da Amazônia brasileira. Pesquisa Florestal Brasileira, [S. l.], v. 42, 2022. DOI: 10.4336/2022.pfb.42e202102180. Disponível em: https://pfb.sede.embrapa.br/pfb/article/view/2180. Acesso em: 19 abr. 2025.

Edição

Seção

Artigos Científicos