Evaluation of kraft lignin and residues of sawmill for producing briquettes
DOI:
https://doi.org/10.4336/2022.pfb.42e202102186Keywords:
Biomass, Natural resources, Potential usesAbstract
The aim of becoming a society based on the rational utilization of the natural resources, has led to the consideration of many alternatives by academic and industrial sectors. The forest sector may be particularly prominent in trying to achieve these goals when using residues of their processes, for timber and pulp production. One of the most important requirements in society is the energy production. Co-products of wood processing and cellulose mills can be used for bioenergy generation. The densification of biomass involves handling, transportation and storage issues, and furthermore, when industrial forest residues such as lignin are added to this biomass, the final energetic product may have some improved properties, adding value to the chain. The purpose of this study was to evaluate the usage of the woody industrial waste, the sawdust from Joannesia princeps Vellozo enriched with Kraft lignin as an additive, aiming to produce briquettes. One of the main findings from this work was the possibility to obtain a briquette with better properties (higher bulk density and higher resistance) when using 6% of Kraft lignin as an additive and a pressure of 1500 PSI.
Downloads
References
ABNT. Associação Brasileira de Normas Técnicas. NBR ISO 11093-9: paper and cardboard: test tubes Part 9: determination of resistance to rupture. Rio de Janeiro, 2009.
Ackom, E. et al. Industrial sustainability of competing wood energy options in Canada. Applied Biochemistry and Biotechnology, n. 162, p. 2259-2272, 2010. https://doi.org/10.1007/s12010-010-9000-6. DOI: https://doi.org/10.1007/s12010-010-9000-6
Alaru, M. et al. Lignin content and briquette quality of different fibre hemp plant types and energy sunflower. Field Crops Research, v. 124, n. 3, p. 332-339, 2011. https://doi.org/10.1016/j.fcr.2011.06.024. DOI: https://doi.org/10.1016/j.fcr.2011.06.024
Ayyachamy, M. et al. Lignin: untapped biopolymers in biomass conversion technologies. Biomass Conversion and Biorefinery, n. 3, p. 255-268, 2013. https://doi.org/10.1007/s13399-013-0084-4. DOI: https://doi.org/10.1007/s13399-013-0084-4
Azadi, P. et al. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renewable and Sustainable Energy Reviews, v. 21, p. 506-523, 2013. https://doi.org/10.1016/j.rser.2012.12.022. DOI: https://doi.org/10.1016/j.rser.2012.12.022
Berghel, J. et al. The effects of kraft lignin additives on wood fuel pellet quality, energy use and shelf life. Fuel Processing Technology, v. 112, p. 64-69, 2013. http://dx.doi.org/10.1016/j.fuproc.2013.02.011. DOI: https://doi.org/10.1016/j.fuproc.2013.02.011
Bhattacharya, S. C. et al. A study on improved biomass briquetting. Energy for Sustainable Development, v. 6, n. 2, p. 67-71, 2002. http://dx.doi.org/10.1016/S0973-0826(08)60317-8. DOI: https://doi.org/10.1016/S0973-0826(08)60317-8
Boschetti, W. T. N. et al. Potential of kraft lignin as an additive in briquette production. Nordic Pulp & Paper Research Journal, v. 34, n. 1, p. 147-152, 2019. https://doi.org/10.1515/npprj-2018-0002. DOI: https://doi.org/10.1515/npprj-2018-0002
Boudet, A. Lignins and lignification: selected issues. Plant Physiology and Biochemistry, v. 38, n. 1-2, p. 81-96, 2000. https://doi.org/10.1016/S0981-9428(00)00166-2. DOI: https://doi.org/10.1016/S0981-9428(00)00166-2
Brand, M. A. Forest biomass energy. Rio de Janeiro: Energy. Interciência, 2010.
Carvalho, D. M. et al. Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Industrial Crops and Products, v. 73, p. 118-126, 2015. https://doi.org/10.1016/j.indcrop.2015.04.021. DOI: https://doi.org/10.1016/j.indcrop.2015.04.021
Clavijo, L. et al. Eucalyptus Kraft Lignin as an additive strongly enhances the mechanical resistance of tree-leaf pellets. Processes, v. 8, n. 376, p. 1-9, 2020. https://doi.org/10.3390/pr8030376. DOI: https://doi.org/10.3390/pr8030376
Cochran, W. G. The comparison of percentages in matched samples. Biometrika, v. 37, n. 3-4, p. 256-266, 1950. https://doi.org/10.1093/biomet/37.3-4.256. DOI: https://doi.org/10.1093/biomet/37.3-4.256
Deshannavar, U. B. et al. Production and characterization of agro-based briquettes and estimation of calorific value by regression analysis: an energy application. Materials Science for Energy Technologies, v. 1, n. 2, p. 175-181, 2018. https://doi.org/10.1016/j.mset.2018.07.003. DOI: https://doi.org/10.1016/j.mset.2018.07.003
DIN. Deutsches Institut Für Normung. DIN EN 14918: determination of calorific value. Germany, 2010.
DIN. Deutsches Institut Für Normung. DIN EN 15103: solid biofuels: determination of bulk density. Germany, 2010.
DIN. Deutsches Institut Für Normung. DIN EN 15104: determination of total content of carbon, hydrogen and nitrogen: I - Instrumental methods. Germany, 2011.
DIN. Deutsches Institut Für Normung. DIN EN 51705: testing of solid mineral fuels: determination of the bulk density of solid fuels. Germany, 2001.
Donato-Trancoso, A. et al. Seed oil of Joannesia princeps improves cutaneous wound closure inexperimental mice. Acta Histochemica, v. 116, n. 7, p. 1169-1177, 2014. https://doi.org/10.1016/j.acthis.2014.06.005. DOI: https://doi.org/10.1016/j.acthis.2014.06.005
Duong, L. D. et al. High molecular-weight thermoplastic polymerization of kraft lignin macromers with diisocyante. BioResources, v. 9, n. 2, p. 2359-2371, 2014. https://doi.org/10.15376/biores.9.2.2359-2371. DOI: https://doi.org/10.15376/biores.9.2.2359-2371
Eichler, P. et al. Potential assessment of eucalyptus grown for biorefinery processes. Agronomy Science and Biotechnology, v. 3, n. 1, p. 1-11, 2017. https://doi.org/10.33158/ASB.2017v3i1p1. DOI: https://doi.org/10.33158/ASB.2017v3i1p1
Ekeberg, D. et al. Characterisation of lignosulphonates and kraft lignin by hydrophobic interaction chromatography. Analytica Chimica Acta, v. 565, n. 1, p. 121-128, 2006. https://doi.org/10.15376/10.1016/j.aca.2006.02.008. DOI: https://doi.org/10.1016/j.aca.2006.02.008
European Standards. Advancement of pellets-related. Germany: Pellets Atlas, 2009.
Ferreira, G. W. et al. Kraft-antraquinone pulp properties of Eucalyptus dunnii obtained within five tree plantation spacings and compared to comercially planted Eucalyptus grandis and Eucalyptus saligna. Ciência Florestal, v. 7, n. 1, p. 41-63, 1997. https://doi.org/10.5902/19805098338. DOI: https://doi.org/10.5902/19805098338
Finney, K. N. et al. Fuel pelletization with a binder: Part I - Identification of a suitable binder for spent mushroom compost: coal tailing pellets. Energy and Fuels, v. 23, n. 6, p. 3195-3202, 2009. https://doi.org/10.1021/ef900020k. DOI: https://doi.org/10.1021/ef900020k
Flora do Brasil. Joannesia in Flora of Brazil Species List. Rio de Janeiro: Botanical Garden of Rio de Janeiro, 2020. Available from: http://floradobrasil.jbrj.gov.br/s. Access on: Apr. 20, 2020.
Gilvari, H. et al. Quality parameters relevant for densification of bio-materials: Measuring methods and affecting factors: a review. Biomass and Bioenergy, v. 120, p. 117-134, 2019. https://doi.org/10.1016/j.biombioe.2018.11.013. DOI: https://doi.org/10.1016/j.biombioe.2018.11.013
Glasser, W. G. Classification of lignin according to chemical and molecular structure. ACS Symposium Series, v. 742, p. 216-238, 1999. https://doi.org/10.1021/bk-2000-0742.ch009. DOI: https://doi.org/10.1021/bk-2000-0742.ch009
Gomes, F. J. B. et al. Through characterization of Brazilian new generation of eucalypt clones and grass for pulp production. International Journal of Forestry, v. 2015, 814071, p. 1-10, 2015. https://doi.org/10.1155/2015/814071. DOI: https://doi.org/10.1155/2015/814071
Gomide, J. L. et al. Technological characterization of the new generation of Eucalyptus clones in Brazil for kraft pulp production. Revista Árvore, v. 29, n. 1, p. 129-137, 2005. https://doi.org/10.1590/S0100-67622005000100014. DOI: https://doi.org/10.1590/S0100-67622005000100014
Gouvêa, A. F. G. et al. Estudo da adição da lignina kraft nas propriedades mecânicas dos briquetes de resíduos da indústria moveleira. Ciência Florestal, v. 27, n. 3, p. 1029-1036, 2017. https://doi.org/10.5902/1980509828678. DOI: https://doi.org/10.5902/1980509828678
Han, K. et al. The study of sulphur retention characteristics of biomass briquettes during combustion. Energy, v. 186, 115788, p. 1-12, 2019. https://doi.org/10.1016/j.energy.2019.07.118. DOI: https://doi.org/10.1016/j.energy.2019.07.118
ISO. International Organization for Standardization. ISO 17225-2: solid biofuels: fuel specifications and classes. Part 2: graded wood péletes. Switzerland, 2014.
Jittabut, P. Physical and thermal properties of briquette fuels from rice straw and sugarcane leaves by mixing molasses. Energy Procedia, v. 79, p. 2-9, 2015. https://doi.org 10.1016/j.egypro.2015.11.452. DOI: https://doi.org/10.1016/j.egypro.2015.11.452
Kaliyan, K. & Morey, R. V. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy, v. 33, n. 3, p. 337-359, 2009. https://doi.org/10.1016/j.biombioe.2008.08.005. DOI: https://doi.org/10.1016/j.biombioe.2008.08.005
Karunanithy, C. et al. Physiochemical characterization of briquettes made from different feedstocks. Biotechnology Research International, v. 2012, 165202, p. 1-12, 2012. https://doi.org/10.1155/2012/165202. DOI: https://doi.org/10.1155/2012/165202
Kers, J. et al. Determination of physical, mechanical and burning characteristics of polymeric waste material briquettes. Estonian Journal of Engineering, v. 16, n. 4, p. 307-316, 2010. https://doi.org/10.3176/eng.2010.4.06. DOI: https://doi.org/10.3176/eng.2010.4.06
Kubo, S. & Kadla, J. F. Poly (Ethylene Oxide)/Organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules, v. 37, n. 18, p. 6904-6911, 2004. https://doi.org/10.1021/ma0490552. DOI: https://doi.org/10.1021/ma0490552
Kun, D. & Pukánszky, B. Polymer/Lignin blends: interactions, properties, applications. European Polymer Journal, v. 93, p. 618-641, 2017. http://dx.doi.org/10.1016/j.eurpolymj.2017.04.035. DOI: https://doi.org/10.1016/j.eurpolymj.2017.04.035
Leokaoke, N. T. et al. Manufacturing and testing of briquettes from inertinite-rich low-grade coal fines using various binders. The Journal of the Southern African Institute of Mining and Metallurgy, v. 118, p. 83-88, 2018. http://dx.doi.org/10.17159/2411-9717/2018/v118n1a10. DOI: https://doi.org/10.17159/2411-9717/2018/v118n1a10
Li, R. X. et al. A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives. Green Chemistry, v. 20, n. 7, p. 1459-1466, 2018. https://doi.org/10.1039/C7GC03026F. DOI: https://doi.org/10.1039/C7GC03026F
Lin, S. Y. & Dence, C. W. Methods in lignin chemistry. Germany: Springer Verlag, 1992. DOI: https://doi.org/10.1007/978-3-642-74065-7
Lumadue, M. R. et al. Lignin as both fuel and fusing binder in briquetted anthracite fines for foundry coke substitute. Fuel, v. 97, p. 869-875, 2012. http://dx.doi.org/10.1016/j.fuel.2012.02.061. DOI: https://doi.org/10.1016/j.fuel.2012.02.061
Luo, H. & Abu-Omar, M. M. Chemicals from lignin. In: Abraham, M. A. (ed.). Encyclopedia of sustainable technologies. [Amsterdam]: Elsevier, 2017. p. 573- 585. DOI: https://doi.org/10.1016/B978-0-12-409548-9.10235-0
Lurii, V. G. Comparative results of the combustion of lignin briquettes and black coal. Solid Fuel Chemistry, v. 42, p. 342-348, 2008. https://doi.org/10.3103/S0361521908060037 DOI: https://doi.org/10.3103/S0361521908060037
Macfarlane, A. L. et al. Bio-based chemicals from bio-refining: lignin conversion and utilization. In: Waldron, K. (ed.). Advances in biorefineries: biomass and waste supply chain exploitation. Amsterdam: Elsevier Science, 2014. p. 659-692. (Woodhead Publishing Series in Energy). DOI: https://doi.org/10.1533/9780857097385.2.659
Maia, B. G. O. et al. Production and Characterization of fuel briquettes from banana leaves waste. Chemical Engineering Transactions, v. 37, p. 439-444, 2014. https://doi.org/10.3303/CET1437074.
Mankowski, J. & Kolodziej, J. Increasing heat of combustion of briquettes made of hemp shives. In: Proceedings of 2008 International Conference on Flax and Other Bast Plants. Saskatoon, FAO/ESCORENA, 2008. p. 344-352.
Marsk, G. Biofuels: aviation alternative? Renewable Energy Focus, v. 9, n. 4, p. 48-51, 2008. https://doi.org/10.1016/S1471-0846(08)70138-0. DOI: https://doi.org/10.1016/S1471-0846(08)70138-0
Martino, D. C. et al. Factors affecting bleachability of eucalypt pulp. BioResources, v. 8, n. 1, p. 1186-1198, 2013. https://doi.org/10.15376/biores.8.1.1186-1198. DOI: https://doi.org/10.15376/biores.8.1.1186-1198
Melati, R. B. et al. Key factors affecting the recalcitrance and conversion process of biomass. BioEnergy Research, v. 12, n. 1, p. 1-20, 2019. https://doi.org/10.1007/s12155-018-9941-0. DOI: https://doi.org/10.1007/s12155-018-9941-0
Mendes, L. M. et al. Pinus spp. na produção de painéis de partículas orientadas (OSB). Ciência Florestal, v. 12, n. 2, p. 135-145, 2002. https://doi.org/10.5902/198050981688. DOI: https://doi.org/10.5902/198050981688
Mendu, V. et al. Global bioenergy potential from high-lignin agricultural residue. Proceedings of the National Academy of Sciences of United States of America, v. 109, n. 10, p. 4014-4019, 2012. https://doi.org/10.1073/pnas.1112757109. DOI: https://doi.org/10.1073/pnas.1112757109
Modiri, N. T. An evaluation of coal briquettes using various binders for application in fixedbed gasification. 2016. 106 f. Dissertation (Magister in Chemical Engineering) - North-West University, South Africa.
Mokfienski, A. et al. Relative importance of wood density and carbohydrate content on pulping yield and product quality. Ciência Florestal, v. 18, n. 3, p. 401-413, 2008. https://doi.org/10.5902/19805098451. DOI: https://doi.org/10.5902/19805098451
Morais, P. H. D. et al. Influence of clone harvesting age of Eucalyptus grandis and hybrids of Eucalyptus grandis X Eucalyptus urophylla in the wood chemical composition and in kraft pulpability. Ciência Florestal, v. 27, n. 1, p. 237-248, 2017. https://doi.org/10.5902/1980509826462. DOI: https://doi.org/10.5902/1980509826462
Moreno, A. I. et al. Physical and chemical evaluation of furniture waste briquettes. Waste Management, v. 49, p. 245-252, 2016. https://doi.org/10.1016/S1471-0846(08)70138-0. DOI: https://doi.org/10.1016/j.wasman.2016.01.048
Ndibewu, P. P. & Tchieta, P. G. Utilisation of lignins in the bioeconomy: projections on ionic liquids and molecularly imprinted polymers for selective separation and recovery of base metals and gold. In: Poletto, M. (ed.). Lignin: trends and applications [United Kingdom]: InTechOpen, 2018. p. 233- 270. DOI: https://doi.org/10.5772/intechopen.72542
Neves, T. A. et al. Evaluation of Eucalyptus clones in different places seeking to the production of vegetal charcoal. Pesquisa Florestal Brasileira, v. 31, n. 68, p. 319-330, 2011. https://doi.org/10.4336/2011.pfb.31.68.319. DOI: https://doi.org/10.4336/2011.pfb.31.68.319
Ngusale, G. K. et al. Briquette making in Kenya: Nairobi and peri-urban areas. Renewable and Sustainable Energy Reviews, v. 40, p. 749-759, 2014. http://dx.doi.org/10.1016/j.rser.2014.07.206. DOI: https://doi.org/10.1016/j.rser.2014.07.206
Nielsen, N. P. K. et al. Importance of temperature, moisture content, and species for the conversion process of wood residues into fuel pellets. Wood and Fiber Science, v. 41, n. 4, p. 414-425, 2009.
Obernberger, I. & Thek, G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy, v. 27, n. 6, p. 653-669, 2004. https://doi.org/10.1016/j.biombioe.2003.07.006. DOI: https://doi.org/10.1016/j.biombioe.2003.07.006
Okuda, N. et al. Chemical changes of kenaf core binderless boards during hot pressing (II): effects on the binderless board properties. Journal of Wood Science, v. 52, p. 249-254, 2006. https://doi.org/10.1007/s10086-005-0744-5. DOI: https://doi.org/10.1007/s10086-005-0744-5
Olugbade, T. et al. Influence of binders on combustion properties of biomass briquettes: a recent review. BioEnergy Research, v. 12, p. 241-259, 2019. https://doi.org/10.1007/s12155-019-09973-w. DOI: https://doi.org/10.1007/s12155-019-09973-w
Onukak, I. E. et al. production and characterization of biomass briquettes from tannery solid waste. Recycling, v. 2, n. 17, p. 1-19, 2017. https://doi.org/10.3390/recycling2040017. DOI: https://doi.org/10.3390/recycling2040017
ONORM. Ostrreiches Normunds Institut. ONORM M 7135: compressed wood or compressed bark in natural state: pellets and briquettes: requirements and test specifications. Vienna, 2000.
PNNL. Pacific Northern National Laboratory. Top value added chemicals from biomass. Springfield, 2007. v. 2.
Pan, X. et al. Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung, v. 60, n. 4, p. 398-401, 2006. https://doi.org/10.1515/HF.2006.062. DOI: https://doi.org/10.1515/HF.2006.062
Paula, L. E. R. et al. Characterization of residues from plant biomass for use in energy generation. Cerne, v. 17, n. 2, p. 237-246, 2011a. https://doi.org/10.1590/S0104-77602011000200012. DOI: https://doi.org/10.1590/S0104-77602011000200012
Paula, L. E. R. et al. Production and evaluation of lignocellulosic residue briquettes. Pesquisa Florestal Brasileira, v. 31, n. 66, p. 103-112, 2011b. https://doi.org/10.4336/2011.pfb.31.66.103. DOI: https://doi.org/10.4336/2011.pfb.31.66.103
Pereira, B. L. C. et al. Influence of adding kraft lignin in eucalyptus pellets properties. Floresta, v. 46, n. 2, p. 235-242, 2016. https://doi.org/10.5380/rf.v46i2.44936. DOI: https://doi.org/10.5380/rf.v46i2.44936
Pereira, B. L. C. et al. Influence of chemical composition of eucalyptus wood on gravimetric yield and charcoal properties. Bioresources, v. 8, n. 3, p. 4574-4592, 2013. https://doi.org/10.15376/biores.8.3.4574-4592. DOI: https://doi.org/10.15376/biores.8.3.4574-4592
Protásio, T. P. et al. Classificação de clones de Eucalyptus por meio da relaçãosiringil/guaiacil e das características de crescimento para uso energético. Scientia Forestalis, v. 45, n. 114, p. 32-341, 2017. https://dx.doi.org/10.18671/scifor.v45n114.09. DOI: https://doi.org/10.18671/scifor.v45n114.09
Protásio, T. P. et al. Compaction of plant biomass for solid biofuels production. Pesquisa Florestal Brasileira, v. 31, n. 68, p. 273-283, 2011a. https://doi.org/10.4336/2011.pfb.31.66.113. DOI: https://doi.org/10.4336/2011.pfb.31.68.273
Protásio, T. P. et al. Relation between higher heating value and elemental and mineral biomass plant components. Pesquisa Florestal Brasileira, v. 31, n. 66, p. 113-122, 2011b. https://doi.org/10.4336/2011.pfb.31.66.113. DOI: https://doi.org/10.4336/2011.pfb.31.66.113
Quirino, W. F. Briquetting of lignocellulosic waste. Brasília, DF, IBAMA, 1991.
Richards, S. R. Physical testing of fuel briquettes. Fuel Processing Technology, v. 25, n. 2, p. 89-100, 1990. https://doi.org/10.1021/ac50043a036. DOI: https://doi.org/10.1016/0378-3820(90)90098-D
Rolim, S. G. & Piotto, D. Silviculture and wood properties of natives species of the Atlantic Forest of Brazil. Belo Horizonte: Rupestre, 2019.
Scandinavian Pulp, Paper and Board Testing Committee. Scan Test Methods. Stockholm, Sweden, 2009.
Scott, R. W. Colorimetric Determination of hexuronic acids in plant materials. Analytical Chemistry, v. 51, n. 7, p. 936-941, 1979. https://doi.org/10.1021/ac50043a036. DOI: https://doi.org/10.1021/ac50043a036
Scown, C. D. et al. Role of lignin in reducing life-cycle carbon emissions, water use, and cost for United States Cellulosic Biofuels. Environmental Science & Technology, v. 48, n. 15, p. 8446-8455, 2014. https://doi.org/10.1021/es5012753. DOI: https://doi.org/10.1021/es5012753
Sette Junior, C. R. et al. Characterization of biomass, charcoal and briquette of Phyllostachys aurea Carr. ex A. & C. Rivière. Scientia Forestalis, v. 45, n. 116, p. 619-628, 2017. https://dx.doi.org/10.18671/scifor.v45n116.03. DOI: https://doi.org/10.18671/scifor.v45n116.03
Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete sample). Biometrika, v. 52, n. 3-4, p. 591-611, 1965. https://doi.org/10.2307/2333709 DOI: https://doi.org/10.1093/biomet/52.3-4.591
Shyamalee, D. et al. Evaluation of different binding materials in forming biomass briquettes with saw dust. International Journal of Scientific and Research Publications, v. 5, n. 3, p. 1-8, 2015.
Silva, C. E. S. et al. Recovering wood waste to produce briquettes enriched with commercial kraft lignin. Natural Resources, v. 12, n. 5, p. 181-195, 2021. https://doi.org/10.4236/nr.2021.125013. DOI: https://doi.org/10.4236/nr.2021.125013
Silva, D. A. et al. Elemental chemical composition of forest biomass at different ages for energy purposes. Floresta e Ambiente, v. 26, n. 4, p. 1-11, 2019. https://doi.org/10.1590/2179-8087.020116. DOI: https://doi.org/10.1590/2179-8087.020116
Simetti, R. et al. Wood quality of five Eucalyptus species planted in Rio Grande do Sul, Brazil for charcoal production. Journal of Tropical Forest Science, v. 30, n. 2, p. 175-181, 2018. https://doi.org/10.26525/jtfs2018.30.2.175181. DOI: https://doi.org/10.26525/jtfs2018.30.2.175181
Soares, V. C. et al. Correlações entre as propriedades da madeira e do carvão vegetal de híbridos de eucalipto. Revista Árvore, v. 38, n. 3, p. 543-549, 2014. https://doi.org/10.1590/S0100-67622014000300017. DOI: https://doi.org/10.1590/S0100-67622014000300017
Solar, R. et al. Simple semi-micro method for the determination of o-acetyl groups in wood and related materials. Nordic Pulp Paper Research Journal, v. 2, n. 4, p. 139-141, 1987. https://doi.org/10.3183/npprj-1987-02-04-p139-141. DOI: https://doi.org/10.3183/npprj-1987-02-04-p139-141
Stelte, W. et al. Fuel pellets from wheat straw: the effect of lignin glass transition and surface Waxes on Pelletizing Properties. BioEnergy Research, v. 5, n. 2, p. 450-458, 2012. https://doi.org/10.1007/s12155-011-9169-8. DOI: https://doi.org/10.1007/s12155-011-9169-8
TAPPI. Technical Association of Pulp and Paper Industry. Standard Method T257 cm-02: sampling and preparing wood for analysis. Atlanta, 2012.
TAPPI. Technical Association of Pulp and Paper Industry. Standard Method T211 om-93: ash in wood, pulp, paper and paperboard: combustion at 525°C. Atlanta, 2002.
TAPPI. Technical Association of Pulp and Paper Industry. Standard Method T264 om- 97: solvent extractives of wood and pulp. Atlanta, 1997.
TAPPI. Technical Association of Pulp and Paper Industry. Standard Method T222 om- 98: acid-insoluble lignin in wood and pulp. Atlanta, 1998.
TAPPI. Technical Association of Pulp and Paper Industry. Standard Method UM 250: acid-soluble lignin in wood and pulp. Atlanta, 1991.
Teixeira, V. L. et al. Potential of Macauba epicarp (Acrocomia aculeata (Jacq.) Lodd. ex Martius) for briquettes production. Floresta, v. 48, n. 4, p. 563-572, 2018. https://doi.org/10.5380/rf.v48i4.57397. DOI: https://doi.org/10.5380/rf.v48i4.57397
Tomani, P. The Lignoboost Process. Cellulose Chemistry and Technology, v. 44, n. 1-3, p. 53-58, 2010.
Tomaszewska, J. et al. Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Advances, v. 8, n. 6, p. 3161-3177, 2018. https://doi.org/10.1039/C7RA12782K. DOI: https://doi.org/10.1039/C7RA12782K
Trugilho, P. F. et al. Elementary analysis of the wood of Eucalyptus clones. Biomassa & Energia, v. 5, n. 1, p. 53-58, 2012.
Trugilho, P. F. et al. Growing characteristics chemical composition physical and dry mass estimated of wood in young Eucalyptus species and clones. Ciência Rural, v. 45, n. 4, p. 661-666, 2015. https://doi.org/10.1590/0103-8478cr20130625. DOI: https://doi.org/10.1590/0103-8478cr20130625
Turns, S. R. An introduction to combustion: concepts and applications. 3rd ed. London: McGraw-Hill, 2013. 752 p.
Upton, B. M. & Kasko, A. M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective.. Chemical Reviews, v. 116, n. 4, p. 2275-2306, 2016. https://doi.org/10.1021/acs.chemrev.5b00345. DOI: https://doi.org/10.1021/acs.chemrev.5b00345
Vishtal, A. & Kraslawski, A. Challenges in industrial applications of technical lignins. BioResources, v. 6, n. 3, p. 3547-3568, 2011. https://doi.org/10.15376/biores.6.3.3547-3568. DOI: https://doi.org/10.15376/biores.6.3.3547-3568
Vital, B. R. Methods of determining wood density. Viçosa, MG: Universidade Federal de Viçosa, 1984.
Wallis, A. F. A. et al. Chemical analysis of polysaccharides in plantation eucalypt woods and pulps. Australia: CRC Publications Committee, 1996.
Wamukonya, I. & Jenkins, B. Durability and relaxation of sawdust and wheat-straw briquettes as possible fuels for Kenya. Biomass and Bioenergy, v. 8, n. 3, p. 175-179, 1995. https://doi.org/10.1016/0961-9534(95)00016-Z. DOI: https://doi.org/10.1016/0961-9534(95)00016-Z
Zanuncio, A. J. V. & Colodette, J. L. Teores de lignina e ácidos urônicos na madeira e polpa celulósica de eucalipto. Revista Árvore, v. 35, n. 2, p. 341-347, 2011. https://doi.org/10.1590/S0100-67622011000200018. DOI: https://doi.org/10.1590/S0100-67622011000200018
Zanuncio, A. J. V. et al. Chemical composition of eucalypt wood with different levels of thinning. Ciência Florestal, v. 23, n. 4, p. 755-760, 2013. https://doi.org/10.5902/1980509812359. DOI: https://doi.org/10.5902/1980509812359
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Carlos Eduardo Silveira da Silva, Larisse Aparecida Ribas Batalha, Alexandre Monteiro de Carvalho, Vinicius Bohrer Lobosco Gonzaga de Oliveira, Ana Márcia Macedo Ladeira Carvalho, Angélica de Cássia Oliveira Carneiro, Fernando José Borges Gomes

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
PFB reserves the right to edit manuscripts to correct grammar/spelling, improve clarity, and comply with the journal’s standards while maintaining the style of the authors.
The final version will be sent to the corresponding author for approval.
Published articles become the property of PFB.
Manuscripts may be used after publication without prior authorization from PFB, as long as the journal is credited.
Warning: figures published in PFB may only be reused with prior authorization from Embrapa Forestry.
All content in PFB is licensed under Creative Commons attribution (type BY-NC-ND).
The opinions and concepts expressed in manuscripts are the sole responsibility of their respective authors and not PFB.