Evaluation of nuclears as a forest restoration technique in Mariana, Minas Gerais State, Brazil

Authors

DOI:

https://doi.org/10.4336/2022.pfb.42e202002154

Keywords:

Mining tailings, Seedling growth, Seedling survival

Abstract

The study aimed to test the efficiency of a new alternative technology, named nuclear, on the survival and growth of tree species seedlings aiming at the forest restoration in areas affected by the tailings of the Fundão dam, in Mariana, Minas Gerais State, Brazil. Two native tree species (Piptadenia gonoacantha (Mart.) J.F. Macbr. and Inga edulis Mart.) were evaluated during 12 months, under a randomized block design and three treatments: hydrogel (T1), nuclear (T2) and control (T3). The effect of treatments and time after planting on seedling survival and growth was analyzed by differences between means and mixed linear models. Significant differences were observed in the two growth in height and in diameter at ground level (DGL) between treatments. The relative growth rates for height and DGL of the two species remained relatively constant with no differences between treatments. We observed that I. edulis presented higher survival under nuclears compared to the other treatments. The results indicate that the use of nuclears alone was not sufficient to guarantee the growth and survival of seedlings, and we recomend its evaluation for other tree native species.

Downloads

Download data is not yet available.

Author Biographies

Sebastião Venâncio Martins, Universidade Federal de Viçosa, Departamento de Engenharia Florestal

http://lattes.cnpq.br/4506693662190287

Josmaíle de Paula Braz, Universidade Federal de Viçosa, Departamento de Engenharia Florestal

http://lattes.cnpq.br/3019551529863625

Pedro Manuel Villa, Universidade Federal de Viçosa, Departamento de Engenharia Florestal

http://lattes.cnpq.br/2943038330953932

William Victor Lisboa Alves, Universidade Federal de Viçosa, Departamento de Engenharia Florestal

http://lattes.cnpq.br/5828929288452864

Mirian Lago Valente, Universidade Federal de Viçosa, Departamento de Engenharia Florestal

http://lattes.cnpq.br/4081379326273409

Gabriel Corrêa Kruschewsky, Fundação Renova

http://lattes.cnpq.br/6822884051481126

Andréia Aparecida Dias, Fundação Renova

http://lattes.cnpq.br/2208170103977999

Fabio Haruki Nabeta, Fundação Renova

http://lattes.cnpq.br/7372133336443111

References

Ahmed, E. M. Hydrogel: preparation, characterization, and applications: a review. Journal of Advanced Research, v. 6, n. 2, p. 105-121, 2015. https://doi.org/10.1016/j.jare.2013.07.006. DOI: https://doi.org/10.1016/j.jare.2013.07.006

Alvares, C. A. et al. Köppen´s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013. https://doi.org/10.1127/0941-2948/2013/0507. DOI: https://doi.org/10.1127/0941-2948/2013/0507

Araujo, H. J. B. Ações de restauração de florestas exploradas seletivamente no sudoeste da Amazônia brasileira/Restoration of selectively harvested forests in southwestern Brazilian Amazon. Brazilian Journal of Animal and Environmental Research, v. 3, n. 1, p. 43-59, 2020.

Artioli, C. G. & Corrêa, R. S. Uso de mantas geotêxteis na revegetação de um fragmento de mata de galeria no Jardim Botânico de Brasília-DF: sobrevivência e desenvolvimento de mudas. Ciência Florestal, v. 29, n. 2, p. 795-810, 2019. https://doi.org/10.5902/198050984016. DOI: https://doi.org/10.5902/198050984016

Bates, D. et al. "˜lme4´: Linear Mixed-Effects Models using "˜Eigen´ and S4. R package version 1.1-21. 2019. Avaliable from: https://cran.r-project.org/web/packages/lme4/lme4.pdf. Access on: June, 25, 2019.

Campanharo, I. T. et al. Forest restoration methods, seasonality, and penetration resistance does not influence aboveground biomass stock on mining tailings in Mariana, Brazil. Anais da Academia Brasileira de Ciências, v. 93, e20201209, 2021. https://doi.org/10.1590/0001-3765202120201209. DOI: https://doi.org/10.1590/0001-3765202120201209

Carmo, F. F., et al. Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspectives in Ecology and Conservation, v. 15, n. 3, p. 145-151, 2017. https://doi.org/10.1016/j.pecon.2017.06.002. DOI: https://doi.org/10.1016/j.pecon.2017.06.002

Charles, L. S. et al. Species wood density and the location of planted seedlings drive early"stage seedling survival during tropical forest restoration. Journal of Applied Ecology, v. 55, n. 2, p. 1009-1018, 2017. https://doi.org/10.1111/1365-2664.13031. DOI: https://doi.org/10.1111/1365-2664.13031

Cheesman, A. W. et al. The role of topography and plant functional traits in determining tropical reforestation success. Journal of Applied Ecology, v. 55, n. 2, p. 1029-1039, 2018. https://doi.org/10.1111/1365-2664.12980. DOI: https://doi.org/10.1111/1365-2664.12980

Crawley, M. J. The R Book. 2nd ed. London: Wiley, 2013.

Davidson, R. et al. Early survival, growth and foliar nutrients in native Ecuadorian trees planted on degraded volcanic soil. Forest Ecology and Management, v. 105, p. 1-19, 1998. https://doi.org/10.1016/S0378-1127(97)00295-8. DOI: https://doi.org/10.1016/S0378-1127(97)00295-8

Dias, M. M. M. et al. Coroamento com papelão para controle de braquiária na formação de povoamento para restauração florestal. Pesquisa Florestal Brasileira, v. 39 n. 1. p. 1-6, 2019. https://doi.org/10.4336/2019.pfb.39e201801713. DOI: https://doi.org/10.4336/2019.pfb.39e201801713

Galindo, V. et al. Facilitation by pioneer shrubs for the ecological restoration of riparian forests in the Central Andes of Colombia. Restoration Ecology, v. 25, n. 5, p. 731-737, 2017. https://doi.org/10.1111/rec.12490. DOI: https://doi.org/10.1111/rec.12490

Goel, M. K. et al. Understanding survival analysis: Kaplan-Meier estimate. International Journal of Ayurveda Research, v. 1, n. 4, p. 274, 2010. https://doi.org/10.4103/0974-7788.76794. DOI: https://doi.org/10.4103/0974-7788.76794

Grossnickle, S. C. & MacDonald, J. E. Why seedlings grow: influence of plant attributes. New Forests, v. 49, n. 1, p. 1-34, 2018. https://doi.org/10.1007/s11056-017-9606-4. DOI: https://doi.org/10.1007/s11056-017-9606-4

Grossnickle, S. C. Why seedlings survive: influence of plant attributes. New Forests, v. 43, n. 5-6, p. 711-738, 2012. https://doi.org/10.1007/s11056-012-9336-6. DOI: https://doi.org/10.1007/s11056-012-9336-6

Hadley, W. R ggplot2 package: an implementation of the grammar of graphics. 2015. Avaliable from: https://ggplot2.tidyverse.org/. Access on: June, 25, 2019.

Holl, K. D. & Aide, T. M. When and where to actively restore ecosystems? Forest Ecology and Management, v. 261, n. 10, p. 1558-1563, 2011. https://doi.org/10.1016/j.foreco.2010.07.004. DOI: https://doi.org/10.1016/j.foreco.2010.07.004

Holl, K. D. et al. Planting seedlings in tree islands versus plantations as a large-scale tropical forest restoration strategy. Restoration Ecology, v. 19, p. 470-479, 2010. https://doi.org/10.1111/j.1526-100X.2010.00674.x. DOI: https://doi.org/10.1111/j.1526-100X.2010.00674.x

Hoffmann, W. A. & Poorter, H. Avoiding bias in calculations of relative growth rate. Annals of Botany, v. 90, n. 1, p. 37-42, 2002. https://doi.org/10.1093/aob/mcf140. DOI: https://doi.org/10.1093/aob/mcf140

Jesus, J. B. et al. Sobrevivência de plântulas de espécies florestais nativas, em mata ciliar no estado de Sergipe. Pesquisa Florestal Brasileira, v. 40, 2020. https://doi.org/10.4336/2020.pfb.40e201801. DOI: https://doi.org/10.4336/2020.pfb.40e201801734

Laughlin, D. C. Applying trait"based models to achieve functional targets for theory"driven ecological restoration. Ecology Letters, v. 17, n. 7, p. 771-784, 2014. https://doi.org/10.1111/ele.12288. DOI: https://doi.org/10.1111/ele.12288

Ley-López, J. M. et al. Seedling growth and survival of five tree species in secondary forests and adjacent pastures in the montane rain forests of Southern Costa Rica. Revista de Biología Tropical, v. 64, n. 4, p. 1565-1583, 2016. http://dx.doi.org/10.15517/rbt.v64i4.22775. DOI: https://doi.org/10.15517/rbt.v64i4.22775

Maciel, C. D. G. et al. Coroamento no controle de plantas daninhas e desenvolvimento inicial de espécies florestais nativas. Semina: Ciências Agrárias, v. 32, n. 1, p. 119-128, 2011. DOI: https://doi.org/10.5433/1679-0359.2011v32n1p119

Martins, S. V. Alternative forest restoration techniques. In: Viana, H. F. S. & García-Morote, F. A. (ed.). New Perspectives in Forest Science. London: United Kingdom. IntechOpen, 2018. p. 131-148. https://doi.org/10.5772/intechopen.72908. DOI: https://doi.org/10.5772/intechopen.72908

Martins, S. V. et al. Monitoring the passive and active ecological restoration of areas impacted by the Fundão tailings dam disruption in Mariana, Minas Gerais, Brazil. In: de Vlieger, K. (ed.). Recent Advances in Ecological Restoration. New York: Nova Science Publishers, 2020. p. 51-95.

Navroski, M. C. et al. Influência do hidrogel no crescimento e no teor de nutrientes das mudas de Eucalyptus dunnii. Floresta, v. 45, n. 2, p. 315-328, 2014. http://dx.doi.org/10.5380/rf.v45i2.34411. DOI: https://doi.org/10.5380/rf.v45i2.34411

Nucleário. Restauração florestal: inovação para plantio de mudas. 2020. Disponível em: https://www.cbd.org.br/cases/nucleario/#:~:text=Nucle%C3%A1rio%20%C3%A9%20uma%20startup%20que,o%20ataque%20de%20formigas%20cortadeiras. Acesso em: 6 abr. 2020.

Paul, G. S. et al. Foliar herbivory and leaf traits of five native tree species in a young plantation of Central Panama. New Forests, v. 43, n. 1, p. 69-87, 2012. https://doi.org/10.1007/s11056-011-9267-7. DOI: https://doi.org/10.1007/s11056-011-9267-7

Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science, v. 369, n. 6505, p. 838-841, 2020. https://doi.org/10.1126/science.aay4490. DOI: https://doi.org/10.1126/science.aay4490

Pinheiro, J. et al. "˜nlme´: Linear and Nonlinear Mixed Effects Models. R package, 2017. Avaliable from: https://cran.r-project.org/web/packages/nlme/nlme.pdf. R package version 3.1-131. (20 January 2020, date last accessed).

Polster, D. F. Soil bioengineering techniques for riparian restoration. In: Proceedings of the 26th Annual British Columbia Mine Reclamation Symposium. British Columbia: The Technical and Research Committee on Reclamation Dawson Creek, 2002. p. 230-239.

Prieto-Rodão, E. et al. A cost-benefit evaluation of direct seeding with and without protector for two native tree species in a tropical rainforest. Restoration Ecology, v. 27, n. 2, p. 247-253, 2018. https://doi.org/10.1111/rec.12853. DOI: https://doi.org/10.1111/rec.12853

R Foundation for Statistical Computing. R Development Core Team: R version 3.6.0. Vienna, 2019. Avaliable from: https://www.R-project.org/. Access on: Feb. 15, 2020.

Rodrigues, R. R. et al. Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. Forest Ecology and Management, v. 261, n. 10, p. 1605-1613, 2011. https://doi.org/10.1016/ j.foreco.2010.07.005. DOI: https://doi.org/10.1016/j.foreco.2010.07.005

Santos, F. A. M. et al. Estratégias de controle de braquiárias Urochloa spp. na formação de povoamento para restauração florestal. Ciência Florestal, v. 30, n. 1, p. 29-42, 2020. https://doi.org/10.5902/1980509825559. DOI: https://doi.org/10.5902/1980509825559

Schievenin, D. F. et al. Monitoramento de indicadores de uma área de restauração florestal em Sorocaba-SP. Revista Científica Eletrônica de Engenharia Florestal, v. 19, n. 1, p. 95-108, 2012.

Silva, L. C. R. & Corrêa, R. S. Sobrevivência e crescimento de seis espécies arbóreas submetidas a quatro tratamentos em área minerada no cerrado. Revista Árvore, v. 32, n. 4, p. 731-740, 2008. https://doi.org/10.1590/S0100-67622008000400015. DOI: https://doi.org/10.1590/S0100-67622008000400015

Silveira, E. R. et al. Controle de gramíneas exóticas em plantio de restauração do Cerrado. In: Durigan, G. & Ramos, V. S. (ed.). Manejo adaptativo: primeiras experiências na restauração de ecossistemas. São Paulo: Páginas e Letras, 2013. p. 5-8.

Sobanski, N. & Marques, M. C. M. Effects of soil characteristics and exotic grass cover on the forest restoration of the Atlantic Forest region. Journal for Nature Conservation, v. 22, n. 3, p. 217-222, 2014. https://doi.org/10.1016/j.jnc.2014.01.001. DOI: https://doi.org/10.1016/j.jnc.2014.01.001

Therneau, T. M. Package "˜survival´. Survival analysis Published on CRAN, 2020. Avaliable from: https://cran.r-project.org/web/packages/survival/survival.pdf. 2020. Access on: June, 27, 2019.

Villa, P. M. et al. Stand structural attributes and functional trait composition overrule the effects of functional divergence on aboveground biomass during Amazon forest succession. Forest Ecology and Management, v. 477, 18481, 2020. https://doi.org/10.1016/j.foreco.2020.118481. DOI: https://doi.org/10.1016/j.foreco.2020.118481

Villa, P. M. et al. Testing species abundance distribution models in tropical forest successions: implications for fine-scale passive restoration. Ecological Engineering, v. 135, p. 687-694, 2019. DOI: https://doi.org/10.1016/j.ecoleng.2019.05.015

Zuur, A. et al. (ed.). Mixed effects models and extensions in ecology with R. New York: Springer Science & Business Media, 2009. DOI: https://doi.org/10.1007/978-0-387-87458-6

Published

2022-12-31

How to Cite

MARTINS, Sebastião Venâncio; BRAZ, Josmaíle de Paula; VILLA, Pedro Manuel; ALVES, William Victor Lisboa; VALENTE, Mirian Lago; KRUSCHEWSKY, Gabriel Corrêa; DIAS, Andréia Aparecida; NABETA, Fabio Haruki. Evaluation of nuclears as a forest restoration technique in Mariana, Minas Gerais State, Brazil. Pesquisa Florestal Brasileira, [S. l.], v. 42, 2022. DOI: 10.4336/2022.pfb.42e202002154. Disponível em: https://pfb.sede.embrapa.br/pfb/article/view/2154. Acesso em: 19 apr. 2025.

Issue

Section

Articles