Water and saline stress on initial growth of Toona ciliata var. australis seedlings
DOI:
https://doi.org/10.4336/2023.pfb.43e202002108Keywords:
Abiotic stress, Irrigation water, Forest nurseriesAbstract
The objective of this study was to evaluate the effects of water and salt stress on initial growth of Australian red cedar (Toona ciliata var. australis) seedlings. Saline stress was evaluated in two completely randomized design (CRD) experiments, considering five osmotic potentials (0.0; -0.3; -0.6; -0.9 and -1.2 MPa). For water stress, five ranges of water potential were evaluated, using CRD (0 to -7; -7.1 to -14.0; -14.1 to -21.0; -21.1 to -28.0 and -28.1 to -35.0 kPa). At the end of both experiments the plant height, stem diameter, aerial part dry mass, roots dry mass, total dry mass and seedling survival were evaluated. Saline solutions application reduced all seedlings development variables. Up to the level of -21 kPa of water stress, there was an increase in height and the plant height and the stem diameter ratio. The other variables have been reduced since the first tested level. The tolerance of seedlings to the stresses evaluated allows for the adjustment of management conditions in the nursery before occuring losses and may also indicate a tolerance to these adverse conditions in the field.
Downloads
References
Andrade, R. S. de et al. Morphological and physiological variation in Toona ciliata under water and salinity stress. Ciência Rural, v. 50, n. 6, 2020. https://doi.org/10.1590/0103-8478cr20190581. DOI: https://doi.org/10.1590/0103-8478cr20190581
Araujo, E. B. G. et al. Crescimento inicial e tolerância de cultivares de meloeiro à salinidade da água. Revista Ambiente & Água, v. 11, n. 2, 2016. https://doi.org/10.4136/ambi-agua.1726. DOI: https://doi.org/10.4136/ambi-agua.1726
Avrella, E. D. et al. Efeito da salinidade no desenvolvimento inicial de mudas de Mimosa scabrella Benth. Iheringia. Série Botânica, v. 74, 2019. https://doi.org/10.21826/2446-82312019v74e2019004. DOI: https://doi.org/10.21826/2446-82312019v74e2019004
Basu, S. et al. Plant adaptation to drought stress. F1000Research, v. 5, 10 p., 2016. https://doi.org/10.12688/f1000research.7678.1. DOI: https://doi.org/10.12688/f1000research.7678.1
Betoni, R. et al. Salinidade e temperatura na germinação e vigor de sementes de mutambo (Guazuma ulmifolia Lam.) (Sterculiaceae). Revista Árvore, v. 35, n. 3, p.605-616, 2011. http://dx.doi.org/10.1590/S0100-67622011000400004. DOI: https://doi.org/10.1590/S0100-67622011000400004
Brito, M. E. et al. Emergence and morphophysiology of Sunki mandarin and other citrus genotypes seedlings under saline stress. Spanish Journal of Agricultural Research, v. 16, n. 1, p. 1-15, 2018. https://doi.org/10.5424/sjar/2018161-9400. DOI: https://doi.org/10.5424/sjar/2018161-9400
Cavins, T. J. et al. Pourthru: a method for monitoring nutrition in the greenhouse. Acta Horticulturae, n. 779, p. 289-298, 2008. https://doi.org/10.17660/ActaHortic.2008.779.35. DOI: https://doi.org/10.17660/ActaHortic.2008.779.35
Dickson, A. et al. Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle, v. 36, n. 1, p. 10-13, 1960. https://doi.org/10.5558/tfc36010-1. DOI: https://doi.org/10.5558/tfc36010-1
Dordel, J. et al. Effects of nurse-tree crop species and density on nutrient and water availability to underplanted Toona ciliata in northeastern Argentina. Canadian Journal of Forest Research, v. 41, p. 1754-1768, 2011a. https://doi.org/10.1139/x11-093. DOI: https://doi.org/10.1139/x11-093
Dordel, J. et al. Relationships between simulated water stress and mortality and growth rates in underplanted Toona ciliata Roem. in subtropical Argentinean plantations. Ecological Modelling, v. 222, n. 17, p. 3226-3235, 2011b. https://doi.org/10.1016/j.ecolmodel.2011.05.027. DOI: https://doi.org/10.1016/j.ecolmodel.2011.05.027
Dutra, T. R. et al. Efeito da salinidade na germinação e crescimento inicial de plântulas de três espécies arbóreas florestais. Pesquisa Florestal Brasileira, v. 37, n. 91, p. 323-330, 2017. https://doi.org/10.4336/2017.pfb.37.91.1447. DOI: https://doi.org/10.4336/2017.pfb.37.91.1447
Fahmideh, L. & Fooladvand Z. Isolation and semi quantitative PCR of Na+/H+ antiporter (SOS1 and NHX) genes under salinity stress in Kochia scoparia. Biological Procedures Online, v. 20, n. 11, 2018. https://doi.org/10.1186/s12575-018-0076-7. DOI: https://doi.org/10.1186/s12575-018-0076-7
Fatemi, F. et al. Exploiting differential gene expression to discover ionic and osmotic-associated transcripts in the halophyte grass Aeluropus littoralis. Biological Procedures Online, v. 21, p. 1-16, 2019. https://doi.org/10.1186/s12575-019-0103-3. DOI: https://doi.org/10.1186/s12575-019-0103-3
Ferreira, L. L. N. et al. Salinidade da água de irrigação e substratos no crescimento de mudas de maracujazeiro amarelo. In: Congresso Brasileiro de Ciência do Solo, 35., 2015. Natal. Anais [...]. Natal: Sociedade Brasileira de Ciência do Solo, 2015. p. 1-4.
Freitas, I. A. S. et al. Crescimento de mudas de Tectona grandis irrigadas com água salina. Ciência Florestal, v. 27, n. 3, p. 961-967, 2017. https://doi.org/10.5902/1980509828667. DOI: https://doi.org/10.5902/1980509828667
Guedes, R. S. et al. Estresse salino e temperaturas na germinação e vigor de sementes de Chorisia glaziovii O. Kuntze. Revista Brasileira de Sementes, v. 33, n. 2, p. 279-288, 2011. https://doi.org/10.1590/S0101-31222011000200010. DOI: https://doi.org/10.1590/S0101-31222011000200010
IBÁ. Indústria Brasileira de Árvores. Relatório 2017: ano base 2016. 2017. Disponível em: https://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf. Acesso em: 11 abr. 2020.
Klein, D. R. et al. Aspectos gerais e silviculturais de Cordia americana, Aspidosperma polyneuron, Toona ciliata e Khaya spp. Revista de Ciências Agroveterinárias, v. 15, n. 2, p. 155-164, 2016. https://doi.org/10.5965/223811711522016155. DOI: https://doi.org/10.5965/223811711522016155
Lopes, J. C. et al. Germinação e vigor de sementes de pau d´alho sob estresse salino. Pesquisa Florestal Brasileira, v. 35, n. 82, p. 169-177, 2015. https://doi.org/10.4336/2015.pfb.35.82.631. DOI: https://doi.org/10.4336/2015.pfb.35.82.631
Lucchese, J. R. et al. Estresse salino e hídrico na germinação e crescimento inicial de plântulas de Toona ciliata M. Roem. var. australis. Ciência Florestal, v. 28, n. 1, p. 141-149, 2018. http://dx.doi.org/10.5902/1980509831633. DOI: https://doi.org/10.5902/1980509831633
Medeiros, D. B. et al. Physiological limitations in two sugarcane varieties under water suppression and after recovering. Theoretical and Experimental Plant Physiology, v. 25, n. 3, p. 213-222, 2013. DOI: https://doi.org/10.1590/S2197-00252013000300006
Medeiros, P. R. F. de et al. Salinidade em ambiente protegido. In: Gheyi, H. R. et al. (ed.). Manejo da salinidade na agricultura: estudos básicos e aplicados. Fortaleza: Instituto Nacional de Ciência e Tecnologia em Salinidade, 2016. p. 113-120.
Munns, R. Comparative physiology of salt and water stress. Plant, Cell & Environment, v. 25, n. 2, p. 239-250, 2002. https://doi.org/10.1046/j.0016-8025.2001.00808.x. DOI: https://doi.org/10.1046/j.0016-8025.2001.00808.x
Portes, M. T. et al. Water deficit affects photosynthetic induction in Bauhinia forficata Link (Fabaceae) and Esenbeckia leiocarpa Engl. (Rutaceae) growing in understorey and gap conditions. Brazilian Journal of Plant Physiology, v. 18, n. 4, p. 491-502, 2006. https://doi.org/10.1590/S1677-04202006000400007. DOI: https://doi.org/10.1590/S1677-04202006000400007
Sá, F. V. da S. et al. Produção de mudas de mamoeiro irrigadas com água salina. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n. 10, p. 1047-1054, 2013. https://doi.org/10.1590/S1415-43662013001000004. DOI: https://doi.org/10.1590/S1415-43662013001000004
Scalon, S. de P. Q. et al. Estresse hídrico no metabolismo e crescimento inicial de mudas de mutambo (Guazuma ulmifolia Lam.). Ciência Florestal, v. 21, n. 4, p. 655-662, 2011. https://doi.org/10.5902/198050984510. DOI: https://doi.org/10.5902/198050984510
Silva, C. R. A. et al. Desenvolvimento biométrico de mudas de eucalipto sob diferentes lâminas de irrigação na fase de crescimento. Pesquisa Florestal Brasileira, v. 35, n. 84, p. 381-390, 2015. https://doi.org/10.4336/2015.pfb.35.84.897
Sixto, H. et al. Eucalyptus spp. and Populus spp. coping with salinity stress: an approach on growth, physiological and molecular features in the context of short rotation coppice (SRC). Trees, v. 30, n. 5, p. 1873-1891, 2016. DOI: https://doi.org/10.1007/s00468-016-1420-7
Souza, A. F. et al. Desenvolvimento inicial e eficiência de uso de água e nitrogênio por mudas de Calophyllum brasiliense, Eucalyptus urograndis, Tabebuia impetiginosa e Toona ciliata. Ciência Florestal, v. 28, n. 4, p. 1465-1477, 2018. http://dx.doi.org/10.5902/1980509835054. DOI: https://doi.org/10.5902/1980509835054
Souza, J. C. A. V. de et al. Cedro australiano (Toona ciliata). Niterói: Rio Rural, 2010. 14 p.
Taiz, L. et al. Fisiologia e desenvolvimento vegetal. Porto Alegre: Artmed, 2017. 858 p.
Vieira, C. T. et al. Morfologia e viabilidade de grãos de pólen de Toona ciliata M. Roemer (Meliaceae) em diferentes estádios florais e tempos de armazenamento. Scientia Forestalis, v. 48, n. 128, e3399, 2020. https://doi.org/10.18671/scifor.v48n128.02. DOI: https://doi.org/10.18671/scifor.v48n128.02
Vieira, F. C. S. & Meireles, L. D. Myrceugenia myrtoides. In: Reflora. Flora e funga do Brasil. Rio de Janeiro: Instituto de Pesquisas Jardim Botânico, [2020]. Disponível em: http://floradobrasil.jbrj.gov.br/reflora/listaBrasil/FichaPublicaTaxonUC/FichaPublicaTaxonUC.do?id=FB10649.Acesso em: 16 abr. 2020.
Vilela, E. S. & Stehling, E. de C. Recomendações de plantio para cedro australiano: versão mudas clonais 3.0. 2015. Disponível em: https://www.belavistaflorestal.com.br/recomendacoes-mudas-clonais. Acesso em: 16 abr. 2020.
Von Arx, G. et al. Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Annals of Botany, v. 109, p. 1091-1100, 2012. https://doi.org/10.1093/aob/mcs030. DOI: https://doi.org/10.1093/aob/mcs030
Zappi, D. C. et al. Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguésia, v. 66, n. 4, p. 1085-1113, 2015. https://doi.org/10.1590/2175-7860201566411. DOI: https://doi.org/10.1590/2175-7860201566409
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Larissa Campos de Sá, Marília Lazarotto, Eduarda Demari Avrella, Márcio Alberto Hilgert, Claudimar Sidnei Fior

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
PFB reserves the right to edit manuscripts to correct grammar/spelling, improve clarity, and comply with the journal’s standards while maintaining the style of the authors.
The final version will be sent to the corresponding author for approval.
Published articles become the property of PFB.
Manuscripts may be used after publication without prior authorization from PFB, as long as the journal is credited.
Warning: figures published in PFB may only be reused with prior authorization from Embrapa Forestry.
All content in PFB is licensed under Creative Commons attribution (type BY-NC-ND).
The opinions and concepts expressed in manuscripts are the sole responsibility of their respective authors and not PFB.