Nitrogen deposition and tree canopy influence on soil C-CO2 efflux
DOI:
https://doi.org/10.4336/2022.pfb.42e201902068Keywords:
Fixação de nitrogênio, Microbiota, Respiração basal do soloAbstract
The increase in atmospheric nitrogen deposition over the years can affect biogeochemical cycling through the action of soil microbiota. The objective of this study was to evaluate the influence of N deposition beyond the tree canopy areas on soil C-CO2 efflux. Four tree species were selected in the open field. For each species, three individuals were selected and the efflux of C-CO2 from the soil under their canopies was evaluated with and without the presence of ammonium nitrate (NH4NO3). They were compared with grass areas (Paspalum notatum Flüggé). The addition of NH4NO3 induced changes in the slope of the straight lines describing the soil C-CO2 efflux to areas under (105%) and outside the trees canopies (70%). The area under Inga laurina canopy was the only one with lower C-CO2 efflux. We concluded that Inorganic N deposition in the state of Rio de Janeiro (9.6 kg N ha-1), intensifies the C-CO2 efflux in the soil and that tree species with bigger canopy areas such as I. laurina provide a reduction of this efflux.
Downloads
References
Alonso, J. K. et al. Aporte de serapilheira em plantio de recomposição florestal em diferentes espaçamentos. Ciência Florestal, v. 25, p. 1-11, 2015. http://dx.doi.org/10.5902/1980509817439.
Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, v. 451, p. 712-715, 2008. http://dx.doi.org/10.1038/nature06503.
Detran-RJ. Departamento de Trânsito do Estado do Rio de Janeiro. Estatística da Frota de veículos do município do Rio de Janeiro. Disponível em: http://detran.rj.gov.br/_estatisticas.veiculos/02.asp. Acesso em: 21 nov. 2019.
Fornara, D. A. & Tilman, D. Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. Ecology, v. 93, p. 2030-2036, 2012. http://dx.doi.org/10.1890/12-0292.1.
Forrester, D. I. et al. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a rewiew. Forest Ecology and Management, v. 233, p. 211-230, 2006. http://dx.doi.org/10.1016/j.foreco.2006.05.012.
Gao, W. L. et al. Effects of simulated atmospheric nitrogen deposition on inorganic nitrogen content and acidification in a cold-temperate coniferous forest soil. Acta Ecológica Sinica, v. 33, p. 114-121, 2013. http://dx.doi.org/10.1016/j.chnaes.2013.01.008.
Gholz, H. L. et al. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, v. 6, p. 751-765, 2000. http://dx.doi.org/10.1046/j.1365-2486.2000.00349.x.
IBGE. Instituto Brasileiro de Geografia e Estatística. Panorama das cidades brasileira. Disponível em: https://cidades.ibge.gov.br/brasil/rj/rio-de-janeiro/panorama. Acesso em: 21 nov. 2019.
Jagadamma, S. et al. Substrate quality alters microbial mineralization of added substrate and soil organic carbon. Biogeosciences, v. 11, p. 4451- 4482, 2014. http://dx.doi.org/10.5194/bg-11-4665-2014.
Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, v. 3, p. 315-322, 2010. http://dx.doi.org/10.1038/ngeo844.
Jenkinson, D. S. & Powlson, D. S. The effects of biocidal treatments on metabolism in soil. V. Method for measuring soil biomass. Soil Biology and Biochemistry, v. 8, p. 209-213, 1976. http://dx.doi.org/10.1016/0038-0717(76)90005-5.
Jiang, L. et al. Plant species effects on soil carbon and nitrogen dynamics in a temperate 216 steppe of northern China. Plant and Soil, v. 346, p. 331-347, 2011. http://dx.doi.org/10.1007/s11104-011-0822-y.
Kuang, F. et al., Wet and dry nitrogen deposition in the central Sichuan Basin of China, Atmospheric Environment, v. 143, p. 39-50, 2016. http://dx.doi.org/10.1016/j.atmosenv.2016.08.032.
Lal, R. Challenges and opportunities in soil organic matter research. European Journal of Soil Science, v. 60, p. 158-169, 2009. http://dx.doi.org/10.1111/j.1365-2389.2008.01114.x.
Liu, Q. et al. Temperature sensitivity of soil respiration to nitrogen fertilization: varying effects between growing and non-growing seasons. PLoS One, v. 11, e:0168599, 2014. http://dx.doi.org/10.1371/journal.pone.0168599.
Lopes, A. A. C. et al. Interpretation of microbial soil indicators as a function of crop yield and organic carbon. Soil Science Society of America Journal, v. 77, p. 461-472, 2013. http://dx.doi.org/10.2136/sssaj2012.0191.
Maaroufi, N. I. et al. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Global Change Biology, v. 21, p. 3169-3180, 2015. http://dx.doi.org/10.1111/gcb.12904.
Mendes, I. C. et al. Bioindicadores de qualidade de solo: dos laboratórios de pesquisa para campo. Cadernos de Ciência e Tecnologia, v. 32, p. 185-203, 2015.
Mendes, I. C. et al. Microbiologia do solo e sustentabilidade de sistemas agrícolas. In: Falieiro, F. G. et al. (ed.). Biotecnologia: estado da arte e aplicações na agropecuária. Brasília, DF: Embrapa, 2011. p. 219-244.
Mendes, R. et al. Efeito do aquecimento global sobre a comunidade microbiana do solo. In: Bettiol, W. et al. (ed.). Aquecimento global e problemas fitossanitários. Brasília, DF: Embrapa, 2017. p. 177-203.
Murphy, M. et al. Linking tree biodiversity to belowground process in a young tropical plantation: Impacts on soil CO2 flux. Forest Ecology and Management, v. 255, p. 2577-2588, 2008. http://dx.doi.org/10.1016/j.foreco.2008.01.034.
Parker, G. G. Throughfall and stemflow in the forest nutrient cycle. Advances in Ecological Reserarch, v. 13, p. 58:120, 1983.
Ramirez, K. S. et al. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, v. 18, p. 1918-1927, 2012. http://dx.doi.org/10.1111/j.1365-2486.2012.02639.x.
R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foudation for Statistical Computing, 2019. Disponível em: http://www.R-project.org; 2019.
Resh, S. C. et al. Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems, v. 5, p. 217-231, 2002. http://dx.doi.org/10.1007/s10021-001-0067-3.
Ritll, T. F. et al. Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality. European Journal of Soil Science, v. 66, p. 714-721, 2015. https://doi.org/10.1111/ejss.12257.
Rodrigues, R. A. R. et al. Aporte atmosférico de amônio, nitrato e sulfato em área de Floresta Ombrófila Densa Montana na Serra dos Órgãos, RJ. Revista Química Nova, v. 30, 2007. http://dx.doi.org/10.1590/S0100-40422007000800009.
Silva, J. M. et al. Mineralização de vermicompostos estimada pela respiração microbiana. Revista Verde, v. 8, p. 132-135, 2013.
Souza, E. D. et al. Biomassa microbiana do solo em sistema de integração lavoura-pecuária em plantio direto, submetido a intensidades de pastejo. Revista Brasileira de Ciência do Solo, v. 34, p. 79-88, 2010. http://dx.doi.org/10.1590/S0100-06832010000100008.
Souza, P. A. et al. Deposições atmosféricas úmida, seca e total de nitrogênio inorgânico dissolvido no estado do Rio de Janeiro. Revista Virtual de Química, v. 9, p. 2052-2066, 2017. https://doi.org/10.21577/1984-6835.20170122.
Tisdall, J. M. & Oades, J. M. Organic matter and water-stable aggregates in soils. European Journal of Soil Science, v. 33, p. 141-163, 1982. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x.
Wang, Y. et al. Effects of forest regeneration practices on the flux of soil CO2 after clear-cutting in subtropical China. Journal of Environmental Management, v. 212, p. 332-339, 2018. https://doi.org/10.1016/j. jenvman.2018.02.038.
Zagatto, M. R. G. et al. Interactions between mesofauna, microbiological and cheminal soil attributes in pure and intercropped Eucalyptus and Acacia mangium plantations. Forest Ecology and Management, v. 433, p. 240-247, 2019. http://dx.doi.org/10.1016/j.foreco.2018.11.008.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Wilbert Valkinir Cabreira, João Elves da Silva Santana, Ramon Pittizer Moreira, Victória Maria Monteiro Mendonça, Fabiano de Carvalho Balieiro, Marcos Gervasio Pereira

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
PFB reserves the right to edit manuscripts to correct grammar/spelling, improve clarity, and comply with the journal’s standards while maintaining the style of the authors.
The final version will be sent to the corresponding author for approval.
Published articles become the property of PFB.
Manuscripts may be used after publication without prior authorization from PFB, as long as the journal is credited.
Warning: figures published in PFB may only be reused with prior authorization from Embrapa Forestry.
All content in PFB is licensed under Creative Commons attribution (type BY-NC-ND).
The opinions and concepts expressed in manuscripts are the sole responsibility of their respective authors and not PFB.