Proposta metodológica para a estimativa da estrutura do dossel no IFN/BR utilizando fotografias hemisféricas

Autores

DOI:

https://doi.org/10.4336/2025.pfb.45e202402302

Palavras-chave:

Inventário florestal, Dossel florestal, Fotografia hemisférica

Resumo

Apesar do papel central em processos ecológicos, ciclos biogeoquímicos e clima, a estrutura do dossel não é incluída nas medições do Inventário Florestal Nacional do Brasil (IFN/BR). Aqui, propomos uma metodologia simples e de baixo custo para incorporar medições de variáveis do dossel utilizando fotografias hemisféricas. Aplicamos a metodologia em 363 unidades amostrais (UA) em Santa Catarina durante o segundo ciclo de medições do Programa FlorestaSC (IFN/SC) e analisamos os dados coletados e o tempo necessário para as operações em 10 UAs. Para demonstrar a potencialidade do método, realizamos uma análise comparativa entre os tipos florestais de SC. Em média, 3% do tempo necessário para levantamento de uma UA foi utilizado para a aquisição das fotografias hemisféricas. Conseguimos estimar a estrutura do dossel em 244 das 363 UAs levantadas. Todas as variáveis da estrutura do dossel diferiram entre as formações florestais do estado, principalmente entre a Floresta Ombrófila Mista e a Floresta Ombrófila Densa. O IFN/BR representa uma grande oportunidade para realizar a estimativa da estrutura do dossel em escala nacional com baixo investimento operacional. Por sua vez, estas estimativas acrescentam uma nova dimensão para compreendermos a ecologia e o funcionamento das florestas brasileiras e sua relação com o clima.

Downloads

Não há dados estatísticos.

Biografia do Autor

Daniel Augusto da Silva, Universidade Regional de Blumenau

Alexander Christian Vibrans, Universidade Regional de Blumenau

Referências

Baudry, O. et al. Estimating light climate in forest with the convex densiometer: operator effect, geometry and relation to diffuse light. European Journal of Forest Research, v. 133, p. 101-110, 2014. https://doi.org/10.1007/s10342-013-0746-6. DOI: https://doi.org/10.1007/s10342-013-0746-6

Brena, D. A. Proposição de um sistema de inventário florestal nacional para o Brasil. Ciência Florestal, v. 6, p. 109-127, 1996. https://doi.org/10.5902/19805098330. DOI: https://doi.org/10.5902/19805098330

Chazdon, R. L. et al. Composition and dynamics of functional groups of trees during tropical forest succession in Northeastern Costa Rica: functional groups of trees. Biotropica, v. 42, p. 31-40, 2010. https://doi.org/10.1111/j.1744-7429.2009.00566.x. DOI: https://doi.org/10.1111/j.1744-7429.2009.00566.x

Chen, J. M. & Black, T. A. Foliage area and architecture of plant canopies from sunfleck size distributions. Agricultural and Forest Meteorology, v. 60, p. 249-266, 1992. DOI: https://doi.org/10.1016/0168-1923(92)90040-B

Chen, J. M. & Cihlar, J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. Ieee Transactions on Geoscience and Remote Sensing, v. 33, p. 777-787, 1995. https://doi.org/10.1109/36.387593. DOI: https://doi.org/10.1109/36.387593

Chianucci, F. An overview of in situ digital canopy photography in forestry. Canadian Journal of Forest Research, v. 50, p. 227-242, 2019. https://doi.org/10.1139/cjfr-2019-0055. DOI: https://doi.org/10.1139/cjfr-2019-0055

Chianucci, F. & Cutini, A. Digital hemispherical photography for estimating forest canopy properties: current controversies and opportunities. IForest, v. 5, p. 290-295, 2012. https://doi.org/10.3832/ifor0775-005. DOI: https://doi.org/10.3832/ifor0775-005

Chianucci, F. et al. Estimation of foliage clumping from the LAI-2000 Plant Canopy Analyzer: effect of view caps. Trees, v. 29, p. 355-366, 2015. https://doi.org/10.1007/s00468-014-1115-x. DOI: https://doi.org/10.1007/s00468-014-1115-x

Eisenlohr, P. V. Persisting challenges in multiple models: a note on commonly unnoticed issues regarding collinearity and spatial structure of ecological data. Revista Brasileira de Botanica, v. 37, p. 365-371, 2014. https://doi.org/10.1007/s40415-014-0064-3. DOI: https://doi.org/10.1007/s40415-014-0064-3

Fournier, R. A. & Hall, R. J. Hemispherical photography in forest science: theory, methods, applications. Dordrecht: Springer Netherlands, 2017a. 306 p. DOI: https://doi.org/10.1007/978-94-024-1098-3

Fournier, R. A. & Hall, R. J. Hemispherical photography in forest science: conclusions, applications, limitations, and implementation perspectives. In: Fournier, R. A. & Hall, R. J. Hemispherical photography in forest science: theory, methods, applications. Dordrecht: Springer Netherlands, 2017b. p. 287-302. DOI: https://doi.org/10.1007/978-94-024-1098-3_10

Freitas, J. V. de et al. Brazil. In: Tomppo, E. et al. National forest inventories. Dordrecht: Springer Netherlands, 2010. p. 89-96.

Freitas, J. V. et al. National Forest Inventory of Brazil. In: Ramírez, C. et al. National Forest Inventories of Latin America and the Caribbean Towards the harmonization of forest information. Roma: FAO, 2022. p. 102-119.

Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, v. 201, p. 187-195, 2015. https://doi.org/10.1016/j.agrformet.2014.11.010. DOI: https://doi.org/10.1016/j.agrformet.2014.11.010

IBGE. Mapa de vegetação do Brasil. Rio de Janeiro, 2004.

Jonckheere, I. et al. Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, v. 121, p. 19-35, 2004. https://doi.org/10.1016/j.agrformet.2003.08.027. DOI: https://doi.org/10.1016/j.agrformet.2003.08.027

Leblanc, S. G. & Fournier, R. A. Measurement of forest structure with hemispherical photography. In: Fournier, R. A. & Hall, R. J. Hemispherical photography in forest science: theory, methods, applications. Dordrecht: Springer Netherlands, 2017. p. 53-84. DOI: https://doi.org/10.1007/978-94-024-1098-3_3

LI-COR. LAI-2200C Plant Canopy Analyzer Instruction Manual. Li-Cor, 2023. Disponível em: https://licor.app.boxenterprise.net/s/fqjn5mlu8c1a7zir5qel.

Lusk, C. H. A field test of forest canopy structure measurements with the CanopyCapture smartphone application. PeerJ, v. 10, e13450, 2022. DOI: 10.7717/peerj.13450. DOI: https://doi.org/10.7717/peerj.13450

Macfarlane, C. et al. Digital canopy photography: exposed and in the raw. Agricultural and Forest Meteorology, v. 197, p. 244-253, 2014. https://doi.org/10.1016/j.agrformet.2014.05.014. DOI: https://doi.org/10.1016/j.agrformet.2014.05.014

Malhado, A. C. M. et al. Seasonal leaf dynamics in an Amazonian tropical forest. Forest Ecology and Management, v. 258, p. 1161-1165, 2009. https://doi.org/10.1016/j.foreco.2009.06.002. DOI: https://doi.org/10.1016/j.foreco.2009.06.002

Matricardi, E. A. T. et al. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sensing of Environment, v. 114, p. 1117-1129, 2010. https://doi.org/10.1016/j.rse.2010.01.001. DOI: https://doi.org/10.1016/j.rse.2010.01.001

Muscolo, A. et al. A review of the roles of forest canopy gaps. Journal of Forestry Research, v. 25, p. 725-736, 2014. https://doi.org/10.1007/s11676-014-0521-7. DOI: https://doi.org/10.1007/s11676-014-0521-7

NG, C. W. W. et al. Relationships between leaf and root area indices and soil suction induced during drying-wetting cycles. Ecological Engineering, v. 91, p. 113-118, 2016. https://doi.org/10.1016/j.ecoleng.2016.02.005. DOI: https://doi.org/10.1016/j.ecoleng.2016.02.005

O’hara, K. L. What is close-to-nature silviculture in a changing world? Forestry, v. 89, p. 1-6, 2016. https://doi.org/10.1093/forestry/cpv043. DOI: https://doi.org/10.1093/forestry/cpv043

Olivas, P. C. et al. Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape. Agricultural and Forest Meteorology, v. 177, p. 110-116, 2013. https://doi.org/10.1016/j.agrformet.2013.04.010. DOI: https://doi.org/10.1016/j.agrformet.2013.04.010

Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science, v. 333, p. 988-993, 2011. https://doi.org/10.1126/science.1201609. DOI: https://doi.org/10.1126/science.1201609

Pfeifer, M. et al. Tropical forest canopies and their relationships with climate and disturbance: results from a global dataset of consistent field-based measurements. Forest Ecosystems, v. 5, p. 7, 2018. https://doi.org/10.1186/s40663-017-0118-7. DOI: https://doi.org/10.1186/s40663-017-0118-7

Pfeifer, M. et al. Validating and Linking the GIMMS Leaf Area Index (LAI3g) with environmental controls in Tropical Africa. Remote Sensing, v. 6, p. 1973-1990, 2014. https://doi.org/10.3390/rs6031973. DOI: https://doi.org/10.3390/rs6031973

Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Frontiers in Ecology and the Environment, v. 20, p. 10-15, 2022. https://doi.org/10.1002/fee.2420. DOI: https://doi.org/10.1002/fee.2420

Pinho, L. C. et al. Avaliação de aplicativos tecnológicos na mensuração de abertura de dossel na Floresta Ombrófila Mista. Ciência Florestal, v. 33, e67685, 2023. https://doi.org/10.5902/1980509867685. DOI: https://doi.org/10.5902/1980509867685

R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. 2021.

Ramírez, C. et al. National Forest Inventories of Latin America and the Caribbean: towards the harmonization of forest information. Rome: FAO, 2022. https://doi.org/10.4060/cb7791en. DOI: https://doi.org/10.4060/cb7791en

Russavage, E. et al. Characterizing canopy openness in open forests: spherical densiometer and canopy photography are equivalent but less sensitive than direct measurements of solar radiation. Journal of Forestry, v. 119, p. 130-140, 2021. https://doi.org/10.1093/jofore/fvaa052. DOI: https://doi.org/10.1093/jofore/fvaa052

Schleppi, P. & Paquette, A. Solar radiation in forests: theory for hemispherical photography. In: Fournier, R. A. & Hall, R. J. Hemispherical photography in forest science: theory, methods, applications. Dordrecht: Springer Netherlands, 2017. p.15–54. . DOI: https://doi.org/10.1007/978-94-024-1098-3_2

Serviço Florestal Brasileiro. Manual de campo: procedimentos para coleta de dados biofísicos e socioambientais. Brasília, DF, 2015. 67 p.

Sevegnani, L. et al. Structure and diversity of the Araucaria forest in southern Brazil: biotic homogenisation hinders the recognition of floristic assemblages related to altitude. Southern Forests: a Journal of Forest Science, v. 81, p. 297-305, 2019. https://doi.org/10.2989/20702620.2019.1636193. DOI: https://doi.org/10.2989/20702620.2019.1636193

Silva, D. A. da et al. Drivers of leaf area index variation in Brazilian Subtropical Atlantic Forests. Forest Ecology and Management, v. 476, p. 118477, 2020. https://doi.org/10.1016/j.foreco.2020.118477. DOI: https://doi.org/10.1016/j.foreco.2020.118477

Silva, D. A. da et al. Conspecific density plays a pivotal role in shaping sapling community in highly fragmented subtropical forests. Austral Ecology, v. 47, p. 1609-1621, 2022. https://doi.org/10.1111/aec.13249. DOI: https://doi.org/10.1111/aec.13249

Silva, D. A. da & Vibrans, A. C. Canopy architecture after selective logging in a Secondary Atlantic Rainforest in Brazil. Floresta e Ambiente, v. 26, e20180374, 2019. https://doi.org/10.1590/2179-8087.037418. DOI: https://doi.org/10.1590/2179-8087.037418

Silva, D. D. et al. Biomass stock and growth are modulated by anthropogenic pressures, canopy structure and tree biodiversity in fragmented Atlantic Rainforest. 2024. https://doi.org/10.22541/au.170664872.21589210/v1. DOI: https://doi.org/10.22541/au.170664872.21589210/v1

Tomppo, E. O. & Schadauer, K. Harmonization of National Forest Inventories in Europe: advances under COST Action E43. Forest Science, v. 58, p. 191-200, 2012. https://doi.org/10.5849/forsci.10-091. DOI: https://doi.org/10.5849/forsci.10-091

Vibrans, A. C. et al. Insights from a large-scale inventory in the southern Brazilian Atlantic Forest. Scientia Agricola, v. 77, e20180036, 2020. https://doi.org/10.1590/1678-992x-2018-0036. DOI: https://doi.org/10.1590/1678-992x-2018-0036

Vibrans, A. C. et al. MonitoraSC: um novo mapa de cobertura florestal e uso da terra de Santa Catarina. Agropecuária Catarinense, v. 34, p. 42-48, 2021. https://doi.org/10.52945/rac.v34i2.1086. DOI: https://doi.org/10.52945/rac.v34i2.1086

Vibrans, A. C. et al. (ed.). Inventário florístico florestal de Santa Catarina: diversidade e conservação dos remanescentes florestais. Blumenau: Edifurb, 2012. v. 1, 344 p.

Weiss, M. & Baret, F. Can-eye version 6.4.91 user manual. Paris: Institut National de la Recherche Agronomique, 2017.

Downloads

Publicado

31-03-2025

Como Citar

SILVA, Daniel Augusto da; VIBRANS, Alexander Christian. Proposta metodológica para a estimativa da estrutura do dossel no IFN/BR utilizando fotografias hemisféricas. Pesquisa Florestal Brasileira, [S. l.], v. 45, 2025. DOI: 10.4336/2025.pfb.45e202402302. Disponível em: https://pfb.sede.embrapa.br/pfb/article/view/2302. Acesso em: 18 abr. 2025.

Edição

Seção

Artigos Científicos

Dados de financiamento