Methodology proposing for estimating the canopy structure in the IFN/BR using hemispherical photographs

Authors

DOI:

https://doi.org/10.4336/2025.pfb.45e202402302

Keywords:

Forest inventories, Forest canopy, Hemispherical photography

Abstract

Despite its central role in ecological processes, biogeochemical cycles and climate, canopy structure estimates are not included in the Brazilian National Forest Inventory (IFN/BR) measurements. Here, we propose a simple and cost-effective methodology to incorporate these estimations using hemispherical photographs. We applied this methodology on 363 sample units (SU) in Santa Catarina State during the second cycle of measurements of the FlorestaSC Program and computed the necessary time for the operations on 10 of those SU. To demonstrate the potential of the method we compared the canopy structure of the forest types occurring in SC. On average, 3% of the time necessary to complete the measurement of a subsample unit is used to take hemispherical photographs. Of all SU, we successfully characterize the canopy of 244 SU. We found that all variables of the canopy structure differ between forest formations, mainly between Araucaria Forest and Evergreen Rain Forest. The IFN/BR represents a great opportunity to implement canopy structure estimation nationwide with little operational investment. In turn, these estimates add a new dimension for our understanding of the Brazilian forest ecology and functioning, and their relationship with climate.

Downloads

Download data is not yet available.

Author Biographies

Daniel Augusto da Silva, University of Blumenau

Alexander Christian Vibrans, University of Blumenau

References

Baudry, O. et al. Estimating light climate in forest with the convex densiometer: operator effect, geometry and relation to diffuse light. European Journal of Forest Research, v. 133, p. 101-110, 2014. https://doi.org/10.1007/s10342-013-0746-6. DOI: https://doi.org/10.1007/s10342-013-0746-6

Brena, D. A. Proposição de um sistema de inventário florestal nacional para o Brasil. Ciência Florestal, v. 6, p. 109-127, 1996. https://doi.org/10.5902/19805098330. DOI: https://doi.org/10.5902/19805098330

Chazdon, R. L. et al. Composition and dynamics of functional groups of trees during tropical forest succession in Northeastern Costa Rica: functional groups of trees. Biotropica, v. 42, p. 31-40, 2010. https://doi.org/10.1111/j.1744-7429.2009.00566.x. DOI: https://doi.org/10.1111/j.1744-7429.2009.00566.x

Chen, J. M. & Black, T. A. Foliage area and architecture of plant canopies from sunfleck size distributions. Agricultural and Forest Meteorology, v. 60, p. 249-266, 1992. DOI: https://doi.org/10.1016/0168-1923(92)90040-B

Chen, J. M. & Cihlar, J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. Ieee Transactions on Geoscience and Remote Sensing, v. 33, p. 777-787, 1995. https://doi.org/10.1109/36.387593. DOI: https://doi.org/10.1109/36.387593

Chianucci, F. An overview of in situ digital canopy photography in forestry. Canadian Journal of Forest Research, v. 50, p. 227-242, 2019. https://doi.org/10.1139/cjfr-2019-0055. DOI: https://doi.org/10.1139/cjfr-2019-0055

Chianucci, F. & Cutini, A. Digital hemispherical photography for estimating forest canopy properties: current controversies and opportunities. IForest, v. 5, p. 290-295, 2012. https://doi.org/10.3832/ifor0775-005. DOI: https://doi.org/10.3832/ifor0775-005

Chianucci, F. et al. Estimation of foliage clumping from the LAI-2000 Plant Canopy Analyzer: effect of view caps. Trees, v. 29, p. 355-366, 2015. https://doi.org/10.1007/s00468-014-1115-x. DOI: https://doi.org/10.1007/s00468-014-1115-x

Eisenlohr, P. V. Persisting challenges in multiple models: a note on commonly unnoticed issues regarding collinearity and spatial structure of ecological data. Revista Brasileira de Botanica, v. 37, p. 365-371, 2014. https://doi.org/10.1007/s40415-014-0064-3. DOI: https://doi.org/10.1007/s40415-014-0064-3

Fournier, R. A. & Hall, R. J. Hemispherical photography in forest science: theory, methods, applications. Dordrecht: Springer Netherlands, 2017a. 306 p. DOI: https://doi.org/10.1007/978-94-024-1098-3

Fournier, R. A. & Hall, R. J. Hemispherical photography in forest science: conclusions, applications, limitations, and implementation perspectives. In: Fournier, R. A. & Hall, R. J. Hemispherical photography in forest science: theory, methods, applications. Dordrecht: Springer Netherlands, 2017b. p. 287-302. DOI: https://doi.org/10.1007/978-94-024-1098-3_10

Freitas, J. V. de et al. Brazil. In: Tomppo, E. et al. National forest inventories. Dordrecht: Springer Netherlands, 2010. p. 89-96.

Freitas, J. V. et al. National Forest Inventory of Brazil. In: Ramírez, C. et al. National Forest Inventories of Latin America and the Caribbean Towards the harmonization of forest information. Roma: FAO, 2022. p. 102-119.

Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, v. 201, p. 187-195, 2015. https://doi.org/10.1016/j.agrformet.2014.11.010. DOI: https://doi.org/10.1016/j.agrformet.2014.11.010

IBGE. Mapa de vegetação do Brasil. Rio de Janeiro, 2004.

Jonckheere, I. et al. Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, v. 121, p. 19-35, 2004. https://doi.org/10.1016/j.agrformet.2003.08.027. DOI: https://doi.org/10.1016/j.agrformet.2003.08.027

Leblanc, S. G. & Fournier, R. A. Measurement of forest structure with hemispherical photography. In: Fournier, R. A. & Hall, R. J. Hemispherical photography in forest science: theory, methods, applications. Dordrecht: Springer Netherlands, 2017. p. 53-84. DOI: https://doi.org/10.1007/978-94-024-1098-3_3

LI-COR. LAI-2200C Plant Canopy Analyzer Instruction Manual. Li-Cor, 2023. Disponível em: https://licor.app.boxenterprise.net/s/fqjn5mlu8c1a7zir5qel.

Lusk, C. H. A field test of forest canopy structure measurements with the CanopyCapture smartphone application. PeerJ, v. 10, e13450, 2022. DOI: 10.7717/peerj.13450. DOI: https://doi.org/10.7717/peerj.13450

Macfarlane, C. et al. Digital canopy photography: exposed and in the raw. Agricultural and Forest Meteorology, v. 197, p. 244-253, 2014. https://doi.org/10.1016/j.agrformet.2014.05.014. DOI: https://doi.org/10.1016/j.agrformet.2014.05.014

Malhado, A. C. M. et al. Seasonal leaf dynamics in an Amazonian tropical forest. Forest Ecology and Management, v. 258, p. 1161-1165, 2009. https://doi.org/10.1016/j.foreco.2009.06.002. DOI: https://doi.org/10.1016/j.foreco.2009.06.002

Matricardi, E. A. T. et al. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sensing of Environment, v. 114, p. 1117-1129, 2010. https://doi.org/10.1016/j.rse.2010.01.001. DOI: https://doi.org/10.1016/j.rse.2010.01.001

Muscolo, A. et al. A review of the roles of forest canopy gaps. Journal of Forestry Research, v. 25, p. 725-736, 2014. https://doi.org/10.1007/s11676-014-0521-7. DOI: https://doi.org/10.1007/s11676-014-0521-7

NG, C. W. W. et al. Relationships between leaf and root area indices and soil suction induced during drying-wetting cycles. Ecological Engineering, v. 91, p. 113-118, 2016. https://doi.org/10.1016/j.ecoleng.2016.02.005. DOI: https://doi.org/10.1016/j.ecoleng.2016.02.005

O’hara, K. L. What is close-to-nature silviculture in a changing world? Forestry, v. 89, p. 1-6, 2016. https://doi.org/10.1093/forestry/cpv043. DOI: https://doi.org/10.1093/forestry/cpv043

Olivas, P. C. et al. Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape. Agricultural and Forest Meteorology, v. 177, p. 110-116, 2013. https://doi.org/10.1016/j.agrformet.2013.04.010. DOI: https://doi.org/10.1016/j.agrformet.2013.04.010

Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science, v. 333, p. 988-993, 2011. https://doi.org/10.1126/science.1201609. DOI: https://doi.org/10.1126/science.1201609

Pfeifer, M. et al. Tropical forest canopies and their relationships with climate and disturbance: results from a global dataset of consistent field-based measurements. Forest Ecosystems, v. 5, p. 7, 2018. https://doi.org/10.1186/s40663-017-0118-7. DOI: https://doi.org/10.1186/s40663-017-0118-7

Pfeifer, M. et al. Validating and Linking the GIMMS Leaf Area Index (LAI3g) with environmental controls in Tropical Africa. Remote Sensing, v. 6, p. 1973-1990, 2014. https://doi.org/10.3390/rs6031973. DOI: https://doi.org/10.3390/rs6031973

Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Frontiers in Ecology and the Environment, v. 20, p. 10-15, 2022. https://doi.org/10.1002/fee.2420. DOI: https://doi.org/10.1002/fee.2420

Pinho, L. C. et al. Avaliação de aplicativos tecnológicos na mensuração de abertura de dossel na Floresta Ombrófila Mista. Ciência Florestal, v. 33, e67685, 2023. https://doi.org/10.5902/1980509867685. DOI: https://doi.org/10.5902/1980509867685

R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. 2021.

Ramírez, C. et al. National Forest Inventories of Latin America and the Caribbean: towards the harmonization of forest information. Rome: FAO, 2022. https://doi.org/10.4060/cb7791en. DOI: https://doi.org/10.4060/cb7791en

Russavage, E. et al. Characterizing canopy openness in open forests: spherical densiometer and canopy photography are equivalent but less sensitive than direct measurements of solar radiation. Journal of Forestry, v. 119, p. 130-140, 2021. https://doi.org/10.1093/jofore/fvaa052. DOI: https://doi.org/10.1093/jofore/fvaa052

Schleppi, P. & Paquette, A. Solar radiation in forests: theory for hemispherical photography. In: Fournier, R. A. & Hall, R. J. Hemispherical photography in forest science: theory, methods, applications. Dordrecht: Springer Netherlands, 2017. p.15–54. . DOI: https://doi.org/10.1007/978-94-024-1098-3_2

Serviço Florestal Brasileiro. Manual de campo: procedimentos para coleta de dados biofísicos e socioambientais. Brasília, DF, 2015. 67 p.

Sevegnani, L. et al. Structure and diversity of the Araucaria forest in southern Brazil: biotic homogenisation hinders the recognition of floristic assemblages related to altitude. Southern Forests: a Journal of Forest Science, v. 81, p. 297-305, 2019. https://doi.org/10.2989/20702620.2019.1636193. DOI: https://doi.org/10.2989/20702620.2019.1636193

Silva, D. A. da et al. Drivers of leaf area index variation in Brazilian Subtropical Atlantic Forests. Forest Ecology and Management, v. 476, p. 118477, 2020. https://doi.org/10.1016/j.foreco.2020.118477. DOI: https://doi.org/10.1016/j.foreco.2020.118477

Silva, D. A. da et al. Conspecific density plays a pivotal role in shaping sapling community in highly fragmented subtropical forests. Austral Ecology, v. 47, p. 1609-1621, 2022. https://doi.org/10.1111/aec.13249. DOI: https://doi.org/10.1111/aec.13249

Silva, D. A. da & Vibrans, A. C. Canopy architecture after selective logging in a Secondary Atlantic Rainforest in Brazil. Floresta e Ambiente, v. 26, e20180374, 2019. https://doi.org/10.1590/2179-8087.037418. DOI: https://doi.org/10.1590/2179-8087.037418

Silva, D. D. et al. Biomass stock and growth are modulated by anthropogenic pressures, canopy structure and tree biodiversity in fragmented Atlantic Rainforest. 2024. https://doi.org/10.22541/au.170664872.21589210/v1. DOI: https://doi.org/10.22541/au.170664872.21589210/v1

Tomppo, E. O. & Schadauer, K. Harmonization of National Forest Inventories in Europe: advances under COST Action E43. Forest Science, v. 58, p. 191-200, 2012. https://doi.org/10.5849/forsci.10-091. DOI: https://doi.org/10.5849/forsci.10-091

Vibrans, A. C. et al. Insights from a large-scale inventory in the southern Brazilian Atlantic Forest. Scientia Agricola, v. 77, e20180036, 2020. https://doi.org/10.1590/1678-992x-2018-0036. DOI: https://doi.org/10.1590/1678-992x-2018-0036

Vibrans, A. C. et al. MonitoraSC: um novo mapa de cobertura florestal e uso da terra de Santa Catarina. Agropecuária Catarinense, v. 34, p. 42-48, 2021. https://doi.org/10.52945/rac.v34i2.1086. DOI: https://doi.org/10.52945/rac.v34i2.1086

Vibrans, A. C. et al. (ed.). Inventário florístico florestal de Santa Catarina: diversidade e conservação dos remanescentes florestais. Blumenau: Edifurb, 2012. v. 1, 344 p.

Weiss, M. & Baret, F. Can-eye version 6.4.91 user manual. Paris: Institut National de la Recherche Agronomique, 2017.

Published

2025-03-31

How to Cite

SILVA, Daniel Augusto da; VIBRANS, Alexander Christian. Methodology proposing for estimating the canopy structure in the IFN/BR using hemispherical photographs. Pesquisa Florestal Brasileira, [S. l.], v. 45, 2025. DOI: 10.4336/2025.pfb.45e202402302. Disponível em: https://pfb.sede.embrapa.br/pfb/article/view/2302. Acesso em: 19 apr. 2025.

Issue

Section

Articles