Definition of tourism itineraries in a Brazilian conservation unit using artificial intelligence

Authors

DOI:

https://doi.org/10.4336/2025.pfb.45e202402303

Keywords:

Geographical information systems, Forest conservation, Operations research

Abstract

The Pandeiros River Environmental Protection Area is an important Brazilian conservation unit used for ecotourism. However, there is a lack of research guiding decision-making regarding tourist movements. The objective of this study is to evaluate the use of a simplified version of the clonal selection metaheuristic for optimizing tourist itineraries. Thirty-one tourist sites were considered, with routes starting from three origins. A mathematical model based on the vehicle routing problem is proposed. This problem was solved using the branch and bound, clonal selection, and simulated annealing algorithms, and the proposed simplification for the clonal selection metaheuristic. Random solutions were evaluated to simulate tourist behaviour. Random solutions yield the worst results. The proposed simplification produced better results for itineraries starting from two origins. It provided an average reduction of 42% in the total distance of tourist itineraries and a 17% reduction in the use of available road networks.

Downloads

Download data is not yet available.

Author Biographies

Carlos Alberto Araújo Júnior, Federal University of Minas Gerais

Helio Garcia Leite, Federal University of Viçosa

João Batista Mendes, Montes Claros State University

References

Anggodo, Y. P. et al. Optimization of multi-trip vehicle routing problem with time windows using genetic algorithm. Journal of Environmental Engineering & Sustainable Technology, v. 3, n. 2, p. 92-97, 2016. http://dx.doi.org/10.21776/ub.jeest.2017.003.02.4. DOI: https://doi.org/10.21776/ub.jeest.2017.003.02.4

Araújo Júnior, C. A. et al. Can linear programming assist metaheuristics in forest production planning problem? Floresta, v. 51, n. 1, p. 751-759, 2021. http://dx.doi.org/10.5380/rf.v51i3.72612. DOI: https://doi.org/10.5380/rf.v51i3.72612

Armas, J. & Melian-Batista, B. Constrained dynamic vehicle routing problems with time windows. Soft Computing, v. 19, n. 1, p. 2481-2498, 2015. http://dx.doi.org/10.1007/s00500-014-1574-4. DOI: https://doi.org/10.1007/s00500-014-1574-4

Brach, M. & Górski, D. Application of network analysis for development and promotion of sustainable tourism in public forests. Folia Forestalia, v. 56, n. 2, p. 105-112, 2014. https://doi.org/10.2478/ffp-2014-0010. DOI: https://doi.org/10.2478/ffp-2014-0010

Castro, L. N. de & Von Zuben, F. J. Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, v. 6, n. 3, p. 239-251, 2002. https://doi.org/10.1109/TEVC.2002.1011539. DOI: https://doi.org/10.1109/TEVC.2002.1011539

Freitas, B. & Portuguez, A. P. Uso, ocupação do espaço e perspectivas de desenvolvimento do turismo ecorrural na bacia hidrográfica do ribeirão São Vicente, Ituiutaba, MG. Campo-Território: Revista de Geografia Agrária, v. 9, n. 17, p. 330-361, 2014. DOI: https://doi.org/10.14393/RCT91722995

Gavalas, D. et al. A survey on algorithmic approaches for solving tourist trip design problems. Journal of Heuristics, v. 20, n. 1, p. 291-328, 2014. https://doi.org/10.1007/s10732-014-9242-5. DOI: https://doi.org/10.1007/s10732-014-9242-5

Hassen, H. B. et al. An artificial immune algorithm for HHC planning based on multi-agent system. Procedia Computer Science, v. 164, n. 1, p. 251-256, 2019. https://doi.org/10.1016/j.procs.2019.12.180. DOI: https://doi.org/10.1016/j.procs.2019.12.180

Hosseinabadi, A. A. R. et al. OVRP_GELS: solving open vehicle routing problem using the gravitational emulation local search algorithm. Neural Computing and Applications, v. 29, n. 1, p. 955-968, 2018. https://doi.org/10.1007/s00521-016-2608-x. DOI: https://doi.org/10.1007/s00521-016-2608-x

Kantawong, K. & Pravesjit, S. An enhanced ABC algorithm to solve the vehicle routing problem with time windows. ECTI Transactions on Computer and Information Technology, v. 14, n. 1, p. 46-52, 2020. https://doi.org/10.37936/ecti-cit.2020141.200016. DOI: https://doi.org/10.37936/ecti-cit.2020141.200016

Karagul, K. & Gungor, I. A case study of heterogeneous fleet vehicle routing problem: touristic distribution application in Alanya. An International Journal of Optimization and Control: Theories & Applications, v. 4, n. 2, p. 67-76, 2014. https://doi.org/10.11121/ijocta.01.2014.00185. DOI: https://doi.org/10.11121/ijocta.01.2014.00185

Liao, Z. & Zheng, W. Using a heuristic algorithm to design a personalized day tour route in a time-dependent stochastic environment. Tourism Management, v. 68, n. 1, p. 284-300, 2018. https://doi.org/10.1016/j.tourman.2018.03.012. DOI: https://doi.org/10.1016/j.tourman.2018.03.012

Mrówczyńska, B. et al. Artificial immune system in planning deliveries in a short time. Bulletin of the Polish Academy of Sciences, v. 67, n. 5, p. 969-980, 2019. https://doi.org/10.24425/bpas.2019.126630. DOI: https://doi.org/10.24425/bpas.2019.126630

Nunes, Y. R. F. et al. Pandeiros: o Pantanal Mineiro. MG Biota, v. 2, n. 2, p. 4-17, 2009.

Ogiolda, M. The use of clonal selection algorithm for the vehicle routing problem with time windows. Symposium for Young Scientists in Technology, Engineering and Mathematics, v. 1, n. 1, p. 68-74, 2017.

Rezende, R. S. et al. Avaliação ambiental do rio Pandeiros utilizando macroinvertebrados como indicadores de qualidade da água. Ecología Austral, v. 22, n. 1, p. 159-169, 2012. DOI: https://doi.org/10.25260/EA.12.22.3.0.1221

Rozidi, A. et al. Determination of the tourist route in Malang Raya by using ant colony optimization. Journal of Physics: Conference Series, v. 1872, n. 1, p. 1-9, 2021. https://doi.org/10.1088/1742-6596/1872/1/012003. DOI: https://doi.org/10.1088/1742-6596/1872/1/012003

Santos, G. L. et al. Anthropogenic and climatic influences in the swamp environment of the Pandeiros River basin, Minas Gerais-Brazil. Environmental Monitoring and Assessment, v. 192, n. 219, p. 218-219, 2020. https://doi.org/10.1007/s10661-020-8192-7. DOI: https://doi.org/10.1007/s10661-020-8192-7

Silva, A. A. et al. Optimization approaches to support the planning and analysis of travel itineraries. Expert Systems with Applications, v. 112, n. 1, p. 321-330, 2018. https://doi.org/10.1016/j.eswa.2018.06.045. DOI: https://doi.org/10.1016/j.eswa.2018.06.045

Silva Júnior, O. S. & Lopes, L. A. S. A free geographic information system as a tool for multi-depot vehicle routing. Brazilian Journal of Operations & Production Management, v. 8, n. 1, p. 103-120, 2011. https://doi.org/10.4322/bjopm.2011.006. DOI: https://doi.org/10.4322/bjopm.2011.006

Shui, X. et al. A clonal selection algorithm for urban bus vehicle scheduling. Applied Soft Computing, v. 36, n. 1, p. 36-44, 2015. http://dx.doi.org/10.1016/j.asoc.2015.07.001. DOI: https://doi.org/10.1016/j.asoc.2015.07.001

Shukla, M. & Jharkharia, S. Artificial immune system-based algorithm for vehicle routing problem with time window constraint for the delivery of agri-fresh produce. Journal of Decision Systems, v. 22, n. 3, p. 224-247, 2013. http://dx.doi.org/10.1080/12460125.2013.810859. DOI: https://doi.org/10.1080/12460125.2013.810859

Souza, A. M. S. et al. Proposta de instituição do comitê da bacia hidrográfica afluentes mineiros do médio São Francisco (UPGRH-S9): diagnóstico sócio-econômico-ambiental apresentado ao Conselho Estadual de Recursos Hídricos, como pré-requisito de aprovação do comitê. Comissão Pró-Comitê, 2008. 32 p.

Yu, C. & Lau, H. Y. K. AIS-based algorithm for solving Vehicle Routing Problem with Simultaneous Pick-up and Delivery (VRP-SPD). Journal of Traffic and Logistics Engineering, v. 1, n. 2, p. 174-178, 2013. http://dx.doi.org/10.12720/jtle.1.2.174-178. DOI: https://doi.org/10.12720/jtle.1.2.174-178

Downloads

Published

2025-02-20

How to Cite

ARAÚJO JÚNIOR, Carlos Alberto; LEITE, Helio Garcia; MENDES, João Batista. Definition of tourism itineraries in a Brazilian conservation unit using artificial intelligence. Pesquisa Florestal Brasileira, [S. l.], v. 45, 2025. DOI: 10.4336/2025.pfb.45e202402303. Disponível em: https://pfb.sede.embrapa.br/pfb/article/view/2303. Acesso em: 19 apr. 2025.

Issue

Section

Articles