Phenotypic divergence of Handroanthus impetiginosus through digital images
DOI:
https://doi.org/10.4336/2024.pfb.44e202202257Keywords:
Seed analysis, Morphology descriptors, ConservationAbstract
Handroanthus impetiginosus (Bignoniaceae) is a tree species recognized for its ecological and economic potential. Carrying out studies aimed at the genetic divergence of this species is essential in order to establish conservation and genetic breeding programs. In this context, we aimed at to analyze the phenotypic divergence among 63 trees of a population of H. impetiginosus from biometric characters of seeds obtained through digital image processing techniques. The eight characters obtained were analyzed using univariate statistical approach (descriptive analysis and simple correlation) and multivariate analysis (principal component analysis and cluster analysis). The results indicate that all biometric variables influence the variability among trees of H. impetiginosus. The digital images in the seeds biometry evidenced the existence of phenotypic divergence, demonstrating efficiency to detect differences. Therefore, they are morphological markers that can help in the differentiation of genotypes of H. impetiginosus and contribute to phenotypic divergence studies.
Downloads
References
Araújo, B. et al. Caracterização biométrica de frutos e sementes, química e rendimento de polpa de juazeiro (Ziziphus joaseiro Mart.). Agropecuária Científica no Semiárido, v. 11, n. 2, p. 15-21, 2015. http://dx.doi.org/10.30969/acsa.v11i2.605. DOI: https://doi.org/10.30969/acsa.v11i2.605
Belarmino, K. S. et al. Genetic diversity in a Poincianella pyramidalis (Tul.) LP Queiroz population assessed by RAPD molecular markers. Genetics and Molecular Research, v. 16, n. 3, 2017. http://doi.org/10.4238/gmr16039663. DOI: https://doi.org/10.4238/gmr16039663
Bittencourt Júnior, N. S. Evidence for post-zygotic self-incompatibility in Handroanthus impetiginosus (Bignoniaceae). Plant reproduction, v. 30, n. 2, p. 69-79, 2017. https://doi.org/10.1007/s00497-017-0300-7. DOI: https://doi.org/10.1007/s00497-017-0300-7
Brasil. Ministério do Meio Ambiente. Portaria n. 245, de 18/07/2001. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, n. 139-E, seção 1, p. 90, 2001.
Correia, L. A. D. S. et al. Morphometric descriptors and physiological seed quality for selecting Aspidosperma pyrifolium Mart. Revista Caatinga, v. 32, p. 751-759, 2019. http://dx.doi.org/10.1590/1983-21252019v32n319rc. DOI: https://doi.org/10.1590/1983-21252019v32n319rc
Costa, M. F. et al. Characterization and genetic divergence of Casearia grandiflora populations in the Cerrado of Piaui state, Brazil. Floresta e Ambiente, v. 23, n. 3, p. 387-396, 2016. https://doi.org/10.1590/2179-8087.007115. DOI: https://doi.org/10.1590/2179-8087.007115
Devkule, A. N. et al. Computerized seed imaging: It’s applications in seed science research. Agriculture Update, v. 12, n. 1, p. 284-286, 2017. https://doi.org/10.15740/HAS/AU/12.techsear2017/284-286. DOI: https://doi.org/10.15740/HAS/AU/12.TECHSEAR(1)2017/284-286
Felix, F. C. et al. Biometry of Pityrocarpa moniliformis seeds using digital imaging: implications for studies of genetic divergence. Revista Brasileira de Ciências Agrárias, v. 15, n. 1, p. 1-8, 2020. https://doi.org/10.5039/agraria.v15i1a6128. DOI: https://doi.org/10.5039/agraria.v15i1a6128
Ferreira, D. D. R. G. et al. Temperature and light under the physiological potential of seeds of Handroanthus impetiginosus. Bioscience Journal, v. 36, n. 1, 2020. https://doi.org/10.14393/BJ-v36n1a2020-42454. DOI: https://doi.org/10.14393/BJ-v36n1a2020-42454
Ferreira, T. & Rasband, W. ImageJ: user guide - IJ 1.46r. 2012. 198 p. Disponível em: https://imagej.nih.gov/ij/docs/guide/user-guide.pdf.
Giustina, L. D. et al. Variabilidade genética em genótipos de teca (Tectona grandis Linn. F.) baseada em marcadores moleculares ISSR e caracteres morfológicos. Ciência Florestal, v. 27, n. 4, 2017. https://doi.org/10.5902/1980509829894. DOI: https://doi.org/10.5902/1980509829894
Hammer, O. & Harper, A. T. D. Paleontological data analysis. Malden: Blackwell Publishing, 2008. 368 p. https://doi.org/10.1002/9780470750711. DOI: https://doi.org/10.1002/9780470750711
Kaiser, H. F. The application of electronic computers to factor analysis. Educational and Psychological Measurement, v. 20, n. 1, p. 141-151, 1960. http://dx.doi.org/10.1177/001316446002000116. DOI: https://doi.org/10.1177/001316446002000116
Leão, N. V. M. et al. Morphometric diversity between fruits and seeds of mahogany trees (Swietenia macrophylla King.) from Parakana indigenous Land, Para State, Brazil. Australian Journal of Crop Science, v. 12, n. 3, p. 435, 2018. https://doi.org/10.21475/ajcs.18.12.03.pne879. DOI: https://doi.org/10.21475/ajcs.18.12.03.pne879
Lúcio, A. D. C. et al. A multivariate approach to analyse native forest tree species seeds. Cerne, v. 12, n. 1, p. 27-37, 2015.
Maia, G. N. Caatinga: árvores e arbustos e suas utilidades. 2. ed. Fortaleza: Printcolor, 2012.
Maranho, A. S. et al. Biometria de frutos-sementes e emergência de plântulas de Cordia alliodora (Ruiz & Pav.) Cham. em diferentes substratos e profundidades de semeadura. Revista Biociências, v. 20, n. 1, 2014.
Menegatti, R. D. et al. Genetic divergence among provenances of Mimosa scabrella Benth. based on seed analysis. Revista Brasileira de Ciências Agrárias, v. 12, n. 3, p. 366-371, 2017. https://doi.org/10.5039/agraria.v12i3a5449. DOI: https://doi.org/10.5039/agraria.v12i3a5449
Noronha, B. G. et al. Morphometry and physiological quality of Moringa oleifera seeds in the function of their fruit position. Journal of Experimental Agriculture International, p. 1-10, 2018. https://doi.org/10.9734/JEAI/2018/43375. DOI: https://doi.org/10.9734/JEAI/2018/43375
Paiva, J. N. et al. Assessment of the physiological quality of Moringa oleifera Lam. seeds. Ciência Florestal, v. 28, n. 1, p. 393-402, 2018. https://doi.org/10.5902/1980509831615. DOI: https://doi.org/10.5902/1980509831615
Rahman, A. & Cho, B. K. Assessment of seed quality using non-destructive measurement techniques: A review. Seed Science Research, v. 26, n. 4, p. 285-305, 2016. https://doi.org/10.1017/S0960258516000234. DOI: https://doi.org/10.1017/S0960258516000234
R Core Team. R: a language and environment for statistical computing: version 4.0 Vienna, Austria: R Foundation for Statistical Computing, 2017. Disponível em: https://www.rproject.org/.
Silva-Junior, O. B. et al. Genome assembly of the pink ipê (Handroanthus impetiginosus, Bignoniaceae), a highly valued, ecologically keystone neotropical timber forest tree. Gigascience, v. 7, n. 1, p. 110-125, 2018. https://doi.org/10.1093/gigascience/gix125. DOI: https://doi.org/10.1093/gigascience/gix125
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jéssica Maia Alves Pimenta, Wendy Mattos Andrade Teixeira de Souza, Rômulo Henrique Teixeira do Egito, Cibele dos Santos Ferrari, Mauro Vasconcelos Pacheco

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
PFB reserves the right to edit manuscripts to correct grammar/spelling, improve clarity, and comply with the journal’s standards while maintaining the style of the authors.
The final version will be sent to the corresponding author for approval.
Published articles become the property of PFB.
Manuscripts may be used after publication without prior authorization from PFB, as long as the journal is credited.
Warning: figures published in PFB may only be reused with prior authorization from Embrapa Forestry.
All content in PFB is licensed under Creative Commons attribution (type BY-NC-ND).
The opinions and concepts expressed in manuscripts are the sole responsibility of their respective authors and not PFB.