Shoot multiplication of two Sequoia sempervirens genotypes with addition of small concentrations of kinetin

Authors

DOI:

https://doi.org/10.4336/2019.pfb.39e201701550

Keywords:

Micropropagation, Cytokinins, Callogenesis

Abstract

Sequoia sempervirens (D. Don) Endl. is a conifer which produces high-quality wood with potential industrial applications. However, the species shows low germination rates. This study was devoted to optimizing a protocol for shoot multiplication of S. sempervirens through micropropagation. Two genotypes, adapted to southern Brazil, constituted the source of explants for consecutive experiments aiming in vitro multiplication. We used the traditional MS (Murashige & Skoog) culture medium at 50% of its original concentration, supplemented with plant growth regulators under two approaches. For multiplication we combined α-naphtalene acetic acid (NAA) and 6-benzilaminopurine (BAP) at distinct concentrations. In the second experiment, we tested concentrations of three cytokinins types (BAP, kinetin  and 2-isopentheiladenine ). NAA at 0.1 mg L-1 enabled the production of shoots with higher mean length for the main branch. The use of kinetin in low concentrations provided the best performance for shoot multiplication, differing between two genotypes. We outline a recommendation of the most suitable plant growth regulators and their concentration for shoot multiplication of S. sempervirens, which might assist further work aiming at adventitious rooting and acclimatization. 

Downloads

Download data is not yet available.

References

Abu-Romman, S. et al. Kinetin is the most effective cytokinin on shoot multiplication from cucumber. Journal of Agricultural Science, v. 7, n. 10, p. 159-164, 2015. http://dx.doi.org/10.5539/ jas.v7n10p159. DOI: https://doi.org/10.5539/jas.v7n10p159

Blažková, A. et al. Auxin metabolism and rooting in young and mature clones of Sequoia sempervirens. Physiologia Plantarum, v. 99, n. 1, p. 73-80, 1997. http://dx.doi.org/10.1111/j.1399-3054.1997. tb03433.x. DOI: https://doi.org/10.1111/j.1399-3054.1997.tb03433.x

Brondani, G. E. et al. Mini-incubators improve the adventitious rooting performance of Corymbia and Eucalyptus microcuttings according to the environment in which they are conditioned. Anais da Academia Brasileira de Ciências, v. 90, n. 2, p. 2409-2423, 2017. http://dx.doi.org/10.1590/0001-3765201720170284. DOI: https://doi.org/10.1590/0001-3765201720170284

Cordeiro, G. M. et al. Meio de cultura, BAP e ANA na multiplicação in vitro de clones de Eucalyptus globulus Labill. Scientia Forestalis, v. 42, n. 10, p. 337-344, 2014. http://dx.doi.org/10.5902/198050986626. DOI: https://doi.org/10.5902/198050986626

Ferreira, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011. http://dx.doi. org/10.1590/S1413-70542011000600001. DOI: https://doi.org/10.1590/S1413-70542011000600001

Gordon, S. P. et al. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences, v. 106, n. 38, p. 16529-16534, 2009. http://dx.doi.org/10.1073/ pnas.0908122106. DOI: https://doi.org/10.1073/pnas.0908122106

Halmagyi, A. et al. The effect of low-and high-power microwave irradiation on in vitro grown Sequoia plants and their recovery after cryostorage. Journal of Biological Physics, v. 43, n. 3, p. 367-379, 2017. http://dx.doi.org/10.1007/s10867-017-9457-4. DOI: https://doi.org/10.1007/s10867-017-9457-4

Hartmann, H. T. et al. Plant propagation: principles and practices. 8th ed. São Paulo: Prentice-Hall, 2011. 915 p.

Huang, L. C. et al. DNA methylation and genome rearrangement characteristics of phase change in cultured shoots of Sequoia sempervirens. Physiologia Plantarum, v. 145, n. 2, p. 360-368, 2012. http://dx.doi.org/10.1111/j.1399-3054.2012.01606.x. DOI: https://doi.org/10.1111/j.1399-3054.2012.01606.x

Kielse, P. et al. Regeneração in vitro de Parapiptadenia rigida (Bentham) Brenan. Ciência Rural, v. 39, n. 4, p. 1098-1104, 2009. http://dx.doi.org/10.1590/S0103-84782009005000046. DOI: https://doi.org/10.1590/S0103-84782009005000046

Ling, A. P. K. et al. Comparative effects of plant growth regulators on leaf and stem explants of Labisia pumila var. alata. Journal of Zhejiang University Science B, v. 14, n. 7, p. 621-631, 2013. http:// dx.doi.org/10.1631/jzus.B1200135. DOI: https://doi.org/10.1631/jzus.B1200135

Liu, C. et al. Shoot regeneration and somatic embryogenesis from needles of redwood (Sequoia sempervirens (D. Don.) Endl.). Plant Cell Reports, v. 25, n. 7, p. 621-628, 2006. http://dx.doi.org/10.1007/ s00299-006-0120-y. DOI: https://doi.org/10.1007/s00299-006-0120-y

Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, v. 15, p. 473-497, 1962. http://dx.doi.org/10.1111/j.1399-3054.1962. tb08052.x. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Navroski, M. C. et al. In vitro multiplication of apical shoot segments of Summer Savory (Satureja hortensis L.). Revista Brasileira de Plantas Medicinais, v. 16, n. 1, p. 117-121, 2014. http://dx.doi. org/10.1590/S1516-05722014000100017. DOI: https://doi.org/10.1590/S1516-05722014000100017

Navroski, M. C. et al. Resgate e propagação vegetativa de Sequoia sempervirens. Floresta, v. 45, n. 2, p. 383-392, 2015. http://dx.doi. org/10.5380/rf.v45i2.35407. DOI: https://doi.org/10.5380/rf.v45i2.35407

Olson, D. F. et al. Sequoia sempervirens (D. Don) Endl. redwoods. In: Burns, R. M. & Honkala, B. H. Silvics of North America: volume 1: conifers. Washington, DC: US Department of Agriculture, Agricultural Handbook, 1990. p. 541-551.

Ozudogru, E. A. et al. Cryopreservation of redwood (Sequoia sempervirens (D. Don.) Endl.) in vitro buds using vitrification-based techniques. CryoLetters, v. 32, n. 2, p. 99-110, 2011.

Premkumar, G. et al. Cytokinin induced shoot regeneration and flowering of Scoparia dulcis L.(Scrophulariaceae)-an ethnomedicinal herb. Asian Pacific Journal of Tropical Biomedicine, v. 1, n. 3, p. 169-172, 2011. http://dx.doi.org/10.1016/S2221-1691(11)60020-8. DOI: https://doi.org/10.1016/S2221-1691(11)60020-8

Rocha, P. S. G. et al. Multiplicação e alongamento in vitro do porta-enxerto de Prunus. Bioscience Journal, v. 25, n. 1, p. 69-74, 2009.

Santos-Serejo, J. A. et al. Meios nutritivos para micropropagação de plantas. In: Souza, A. S. & Junghans, T. G. Introdução à micropropagação de plantas. Cruz das Almas: Embrapa Mandioca e Fruticultura Tropical, 2006. p. 80-98.

Statistica 6.0: Statistica is a data analysis and visualization program. [S.l.]: Informer Technologies, 2019. Disponível em: . Acesso em: 5 abr. 2019.

Sul, I. W. & Korban, S. S. Direct shoot organogenesis from needles of three genotypes of Sequoia sempervirens. Plant Cell, Tissue and Organ Culture, v. 80, n. 3, p. 353-358, 2005. https://doi.org/10.1007/ s11240-004-1365-1 DOI: https://doi.org/10.1007/s11240-004-1365-1

Su, Y. H. et al. Auxin-cytokinin interaction regulates meristem development. Molecular Plant, v. 4, n. 4, p. 616-625, 2011. http:// dx.doi.org/10.1093/mp/ssr007. DOI: https://doi.org/10.1093/mp/ssr007

Xavier, A. et al. Silvicultura clonal: princípios e técnicas. Viçosa, MG: Ed da UFV, 2013. 272 p.

Wang, B. et al. An efficient adventitious shoot regeneration system for ramie (Boehmeria nivea Gaud) using thidiazuron. Botanical Studies, v. 48, n. 2, p. 173-180, 2007.

Downloads

Published

2019-12-23

How to Cite

MENEGUZZI, Aline; KONZEN, Enéas Ricardo; NAVROSKI, Marcio Carlos; CAMARGO, Samila Silva; PEREIRA, Mariane de Oliveira; RUFATO, Léo; LOVATEL, Queli Cristina. Shoot multiplication of two Sequoia sempervirens genotypes with addition of small concentrations of kinetin. Pesquisa Florestal Brasileira, [S. l.], v. 39, n. 1, 2019. DOI: 10.4336/2019.pfb.39e201701550. Disponível em: https://pfb.sede.embrapa.br/pfb/article/view/1550. Acesso em: 19 apr. 2025.

Issue

Section

Articles