Growth promoters in propagation of caroba

Authors

  • Patrícia Pinheiro Amaral Universidade Estadual do Rio Grande do Sul
  • Gerusa Pauli Kist Steffen Fundação Estadual de Pesquisa Agropecuária
  • Joseila Maldaner Fundação Estadual de Pesquisa Agropecuária
  • Evandro Luiz Missio Fundação Estadual de Pesquisa Agropecuária
  • Cleber Witt Saldanha Fundação Estadual de Pesquisa Agropecuária

DOI:

https://doi.org/10.4336/2017.pfb.37.90.1402

Keywords:

Jacaranda micrantha, Vermicomposting, Trichoderma

Abstract

The use of organic inputs, which are able of promoting plant growth, is an alternative to anticipate forest seedlings trading in nursery garden. Caroba (Jacaranda micrantha) is a native forest species from the southern of Brazil, which presents several potential uses. This study aims to analyze the efficiency of vermicompost and fungal isolates of the genus Trichoderma as growth promoters in J. micrantha seedlings. The experiment was carried out with nine substrates treatments, containing different percentages of vermicompost (0, 25 and 50%) on the control substrate (sifted soil and commercial substrate Carolina Soil® in 1:1 ratio) in the presence or absence of T. asperelloides and T. virens. We used a completely randomized design with 18 repetitions per treatment. After 90 days of seeding we determined: shoot height, leaf number, stem diameter, dry weight of shoots and roots and Dickson quality index. Significant effects on growth promotion of caroba seedlings were observed for isolated or combined application of Trichoderma sp. and vermicompost. T. asperelloides isolate was superior then T. virens in promoting J. micrantha growth. It was concluded that the use of vermicompost and both species of Trichoderma sp. promoted growth of J. micrantha seedlings, and the combined use of both biologic inputs promoted more pronounced increase in plants growth.

Downloads

Download data is not yet available.

References

Aguiar, A. R. et al. Efeito de metabólitos produzidos por Trichodemrma spp. sobre o índice mitótico em células das pontas de raízes de Allium cepa. Bioscience Journal, v. 31, n. 3, p. 934-940, 2015. DOI: 10.14393/BJ-v31n3a2015-23292. DOI: https://doi.org/10.14393/BJ-v31n3a2015-23292

Altamore, C. et al. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology, v. 65, n. 7, p. 2926-2933, 1999. DOI: 10.1371/journal.pone.0130081. DOI: https://doi.org/10.1128/AEM.65.7.2926-2933.1999

Andreazza, R. et al. Efeito do vermicomposto no crescimento inicial de ipê amarelo (Handroanthus chrysotrichus) e leucena (Leucaena leucocephala). Nativa, v. 1, n. 1, p. 29-33, 2013. DOI: 10.14583/2318-7670.v01n01a06. DOI: https://doi.org/10.14583/2318-7670.v01n01a06

Antunes, R. M. et al. Crescimento inicial de acácia-negra com vermicompostos de diferentes resíduos agroindustriais. Ciência Florestal, v. 26, n. 1, p. 1-9, 2016. DOI: 10.5902/1980509821060. DOI: https://doi.org/10.5902/1980509821060

Arancon, N. Q. et al. Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology, v. 42, n. 1, p. 65-69, 2006. DOI: 10.1016/j.ejsobi.2006.06.004. DOI: https://doi.org/10.1016/j.ejsobi.2006.06.004

Azevedo, I. M. G. et al. O. Estudo do crescimento e qualidade de mudas de marupá (Simarouba amara Aubl) em viveiro. Acta Amazônica, v. 40, n. 1, p. 157-164, 2010. DOI: 10.1590/S0044-59672010000100020. DOI: https://doi.org/10.1590/S0044-59672010000100020

Backes, P. & Irgang, B. Árvores do Sul: guia de identificação e interesse ecológico: as principais espécies nativas sul-brasileiras. Santa Cruz do Sul: Instituto Souza Cruz, 2002.

Belda, R. M. et al. Nutrient-rich compost versus nutrient-poor vermicompost as growth media for ornamental-plant production. Journal Plant Nutrition Soil Science, v. 176, n. 6, p. 827-835, 2013. DOI: 10.1002/jpln.201200325. DOI: https://doi.org/10.1002/jpln.201200325

Caldeira, M. V. W. et al. Composto orgânico na produção de mudas de aroeira vermelha. Scientia Agrária, v. 9, n. 1, p. 27-33, 2008. DOI: 10.5380/rsa.v9i1.9898. DOI: https://doi.org/10.5380/rsa.v9i1.9898

Carvajal, L. H. et al. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological Control, v. 51, p. 409-416, 2009. DOI: 10.1016/j.biocontrol.2009.07.018. DOI: https://doi.org/10.1016/j.biocontrol.2009.07.018

Carvalho Filho, M. R. et al. Avaliação de isolados de Trichoderma na promoção de crescimento, produção de acido indolacético in vitro e colonização endofítica de mudas de eucalipto. Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia, 2008. 16 p. (Embrapa Recursos Genéticos e Biotecnologia. Documentos, 226).

Chagas, L. F. B. et al. Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Brazillian Journal of Botany, v. 39, n. 2, p. 437-445, 2016. DOI: 10.1007/s40415-015-0247-6. DOI: https://doi.org/10.1007/s40415-015-0247-6

Chen, L. H. et al. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Applied Microbiology and Biotechnology, v. 89, p. 1653-1663, 2011. DOI: 10.1007/s00253-010-2948-x. DOI: https://doi.org/10.1007/s00253-010-2948-x

Daniel, O. et al. Aplicação de fósforo em mudas de Acacia mangium WILLD. Revista Árvore, v. 21, n. 2, p. 163-168, 1997.

Dent, D. H. & Wright, S. J. The future of tropical species in secondary forest: a quantitative review. Biological Conservation, v. 142, p. 2833-2843, 2009. DOI: 10.1016/j.biocon.2009.05.035. DOI: https://doi.org/10.1016/j.biocon.2009.05.035

Dickson, A. et al. Quality appraisal of white spruce and white pine seedling stock in nurseries. Forestry Chronicle, v. 36, p. 10-13, 1960. DOI: 10.5558/tfc36010-1. DOI: https://doi.org/10.5558/tfc36010-1

Donoso, E. et al. Efecto de Trichoderma harzianum y compost sobre el crecimiento de plántulas de Pinus radiata em viveiro. Bosque, v. 29, n. 1, p. 52-57, 2008. DOI: 10.4067/S0717-92002008000100006. DOI: https://doi.org/10.4067/S0717-92002008000100006

Edwards, C. A. et al. Vermiculture technology: earthworms, organic wastes, and environmental management. New York: CRC Press, 2010. DOI: 10.1201/b10453. DOI: https://doi.org/10.1201/b10453

Esposito, E. & Silva, M. Systematics and environmental application of the genus Trichoderma. Critical Reviews in Microbiology, v. 24, n. 2, p. 89-98, 1998. DOI: 10.1080/10408419891294190. DOI: https://doi.org/10.1080/10408419891294190

Ferreira, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011. DOI: 10.1590/S1413-70542011000600001. DOI: https://doi.org/10.1590/S1413-70542011000600001

Gravel, V. et al. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride possible role of indole acetic acid (IAA). Soil Biology & Biochemistry, v. 39, p. 1968-1977, 2007. DOI: 10.1016/j.soilbio.2007.02.015. DOI: https://doi.org/10.1016/j.soilbio.2007.02.015

Harman, G. E. et al. Trichoderma species: opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, v. 2, n. 1, p. 43-56, 2004. DOI: 10.1038/nrmicro797. DOI: https://doi.org/10.1038/nrmicro797

Hunt, G. A. Effect of styroblock design and cooper treatment on morphology of conifer seedlings. In: Rose, R. et al. (Ed.). Proceedings"¦ Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1990. p. 218-222. (Roseburg, OR. General Technical Report RM-200).

Lorenzi, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 4. ed. Nova Odessa: Plantarum, 2013. v. 2. 384 p.

Lourenço, N. M. G. & Coelho, S. I. D. Vermicompostagem e qualidade ambiental. São Bartolomeu de Messines, 2009.

Maji, D. et al. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Applied Soil Ecology, v. 110, p. 97-108, 2017. DOI: 10.1016/j.apsoil.2016.10.008. DOI: https://doi.org/10.1016/j.apsoil.2016.10.008

Manual de adubação e de calagem para os estados do Rio Grande do Sul e de Santa Catarina. SBCS/NRS. Porto Alegre: Sociedade Brasileira de Ciência do Solo, Núcleo Regional Sul, Comissão de Química e Fertilidade do Solo, 2004. 400 p.

Masciandaro, G. et al. Fertigation with wastewater and vermicompost: soil biochemical and agronomic implications. Pedosphere, v. 24, n. 5, p. 625-634, 2014. DOI: 10.1016/S1002-0160(14)60048-5. DOI: https://doi.org/10.1016/S1002-0160(14)60048-5

Muthukumar, T. & Udaiyan, K. Growth response and nutrient utilization of Casuarina equisetifolia seedlings inoculated with bioinoculants under tropical nursery conditions. New Forests, v. 40, n. 1, p. 101-118, 2010. DOI: 10.1007/s11056-009-9186-z. DOI: https://doi.org/10.1007/s11056-009-9186-z

Ravindran, B. et al. Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste. Bioresource Technology, v. 217, p. 200-204, 2016. DOI: 10.1016/j.biortech.2016.03.032. DOI: https://doi.org/10.1016/j.biortech.2016.03.032

Resende, M. P. et al. Phosphate solubilization and phytohormone production by endophytic and rhizosphere Trichoderma isolates of guanandi (Calophyllum brasiliense Cambess). African Journal of Microbiology Research, v. 8, n. 27, p. 2616-2623, 2014. DOI: 10.1007/s40415-015-0247-6. DOI: https://doi.org/10.5897/AJMR2014.6633

Rodda, M. R. C. et al. Estímulo no crescimento e na hidrólise de ATP em raízes de alface tratadas com humatos de vermicomposto. I- Efeito da concentração. Revista Brasileira de Ciência do Solo, v. 30, n. 4, p. 649-656, 2006. DOI: 10.1590/S0100-06832006000400005. DOI: https://doi.org/10.1590/S0100-06832006000400005

Rovedder, A. P. M. et al. Potential medicinal use of forest species of the Deciduous Seasonal Forest from Atlantic Forest Biome, South Brazil. Brazilian Archives of Biology and Technology, v. 59, p. 1-11, 2016. DOI: 10.1590/1678-4324-2016150329. DOI: https://doi.org/10.1590/1678-4324-2016150329

Santos, H. A. et al. Associação de isolados de Trichoderma ssp. E ácido indol - 3- butírico (AIB) na promoção de enraizamento de estacas e crescimento de maracujazeiro. Bioscience Journal, v. 26, n. 6, p. 966-972, 2010.

Shoresh, M. et al. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, v. 48, p. 21-43, 2010. DOI: 10.1146/annurev-phyto-073009-114450. DOI: https://doi.org/10.1146/annurev-phyto-073009-114450

Sistema Brasileiro de Classificação de Solos. Brasília, DF: Embrapa Produção de Informação; Rio de Janeiro: Embrapa Solos, 1999.

Souza, C. A. M. et al. Crescimento em campo de espécies florestais em diferentes condições de adubação. Ciência Florestal, v. 16, n. 3, p. 243-249, 2006. DOI: 10.5902/198050981905. DOI: https://doi.org/10.5902/198050981905

Steffen, G. P. K. et al. Húmus de esterco bovino e casca de arroz carbonizada como substratos para a produção de mudas de boca-de-leão. Acta Zoológica Mexicana, v. 26, nesp. 2, p. 345-357, 2010. DOI: https://doi.org/10.21829/azm.2010.262899

Steffen, G. P. K. et al. Utilização de vermicomposto como substrato na produção de mudas de Eucalyptus grandis e Corymbia citriodora. Pesquisa Florestal Brasileira, v. 3, n. 36, p. 75-82, 2011. DOI: 10.4336/2011.pfb.31.66.75. DOI: https://doi.org/10.4336/2011.pfb.31.66.75

Steffen, G. P. K. & Maldaner, J. Methodology for Trichoderma sp. multiplication in organic substrates. International Journal of Current Research, v. 9, n. 1, p. 44564-44567, 2017.

Taiz, L. & Zeiger, E. Fisiologia vegetal. 5. ed. Porto Alegre: ArtMed, 2013. 954 p.

Tedesco, J. et al. Análise de solo, planta e outros materiais. 2. ed. Porto Alegre: UFRGS, 1995. 174 p.

Tedesco, N. et al. Influência do vermicomposto na produção de mudas de caroba (Jacaranda micrantha Chamisso). Revista Árvore, v. 23, n. 1, p.1-8, 1999.

Tsahouridou, P. C. & Thanassoulopoulos, C. C. Proliferation of Trichoderma koningii in the tomato rhizosphere and the suppression of damping-off by Sclerotium rolfsii. Soil Biology & Biochemistry, v. 34, n. 6, p. 767-776, 2002. DOI: 10.1016/S0038-0717(02)00006-8. DOI: https://doi.org/10.1016/S0038-0717(02)00006-8

Urrestarazu, M. et al. Wetting agent effect on physical properties of new and reused rockwool and coconut coir waste. Scientia Horticulturae, v. 116, n. 1, p. 104-108, 2008. DOI: 10.1016/j.scienta.2007.10.030. DOI: https://doi.org/10.1016/j.scienta.2007.10.030

Zaller, J. G. Vermicompost as a substitute for peat in potting media: effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Scientia Horticulturae, v. 112, n. 2, p. 191-199, 2007. DOI: 10.1016/j.scienta.2006.12.023. DOI: https://doi.org/10.1016/j.scienta.2006.12.023

Zeilinger, S. et al. Secondary metabolism in Trichoderma: chemistry meets genomics. Fungal Biology Reviews, v. 30, n. 2, p. 74-90, 2016. DOI: 10.1016/j.fbr.2016.05.001. DOI: https://doi.org/10.1016/j.fbr.2016.05.001

Published

2017-06-30

How to Cite

AMARAL, Patrícia Pinheiro; STEFFEN, Gerusa Pauli Kist; MALDANER, Joseila; MISSIO, Evandro Luiz; SALDANHA, Cleber Witt. Growth promoters in propagation of caroba. Pesquisa Florestal Brasileira, [S. l.], v. 37, n. 90, p. 149–157, 2017. DOI: 10.4336/2017.pfb.37.90.1402. Disponível em: https://pfb.sede.embrapa.br/pfb/article/view/1402. Acesso em: 8 nov. 2025.

Issue

Section

Articles