Growth promoters in propagation of caroba
DOI:
https://doi.org/10.4336/2017.pfb.37.90.1402Keywords:
Jacaranda micrantha, Vermicomposting, TrichodermaAbstract
The use of organic inputs, which are able of promoting plant growth, is an alternative to anticipate forest seedlings trading in nursery garden. Caroba (Jacaranda micrantha) is a native forest species from the southern of Brazil, which presents several potential uses. This study aims to analyze the efficiency of vermicompost and fungal isolates of the genus Trichoderma as growth promoters in J. micrantha seedlings. The experiment was carried out with nine substrates treatments, containing different percentages of vermicompost (0, 25 and 50%) on the control substrate (sifted soil and commercial substrate Carolina Soil® in 1:1 ratio) in the presence or absence of T. asperelloides and T. virens. We used a completely randomized design with 18 repetitions per treatment. After 90 days of seeding we determined: shoot height, leaf number, stem diameter, dry weight of shoots and roots and Dickson quality index. Significant effects on growth promotion of caroba seedlings were observed for isolated or combined application of Trichoderma sp. and vermicompost. T. asperelloides isolate was superior then T. virens in promoting J. micrantha growth. It was concluded that the use of vermicompost and both species of Trichoderma sp. promoted growth of J. micrantha seedlings, and the combined use of both biologic inputs promoted more pronounced increase in plants growth.Downloads
References
Aguiar, A. R. et al. Efeito de metabólitos produzidos por Trichodemrma spp. sobre o índice mitótico em células das pontas de raízes de Allium cepa. Bioscience Journal, v. 31, n. 3, p. 934-940, 2015. DOI: 10.14393/BJ-v31n3a2015-23292. DOI: https://doi.org/10.14393/BJ-v31n3a2015-23292
Altamore, C. et al. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology, v. 65, n. 7, p. 2926-2933, 1999. DOI: 10.1371/journal.pone.0130081. DOI: https://doi.org/10.1128/AEM.65.7.2926-2933.1999
Andreazza, R. et al. Efeito do vermicomposto no crescimento inicial de ipê amarelo (Handroanthus chrysotrichus) e leucena (Leucaena leucocephala). Nativa, v. 1, n. 1, p. 29-33, 2013. DOI: 10.14583/2318-7670.v01n01a06. DOI: https://doi.org/10.14583/2318-7670.v01n01a06
Antunes, R. M. et al. Crescimento inicial de acácia-negra com vermicompostos de diferentes resíduos agroindustriais. Ciência Florestal, v. 26, n. 1, p. 1-9, 2016. DOI: 10.5902/1980509821060. DOI: https://doi.org/10.5902/1980509821060
Arancon, N. Q. et al. Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology, v. 42, n. 1, p. 65-69, 2006. DOI: 10.1016/j.ejsobi.2006.06.004. DOI: https://doi.org/10.1016/j.ejsobi.2006.06.004
Azevedo, I. M. G. et al. O. Estudo do crescimento e qualidade de mudas de marupá (Simarouba amara Aubl) em viveiro. Acta Amazônica, v. 40, n. 1, p. 157-164, 2010. DOI: 10.1590/S0044-59672010000100020. DOI: https://doi.org/10.1590/S0044-59672010000100020
Backes, P. & Irgang, B. Árvores do Sul: guia de identificação e interesse ecológico: as principais espécies nativas sul-brasileiras. Santa Cruz do Sul: Instituto Souza Cruz, 2002.
Belda, R. M. et al. Nutrient-rich compost versus nutrient-poor vermicompost as growth media for ornamental-plant production. Journal Plant Nutrition Soil Science, v. 176, n. 6, p. 827-835, 2013. DOI: 10.1002/jpln.201200325. DOI: https://doi.org/10.1002/jpln.201200325
Caldeira, M. V. W. et al. Composto orgânico na produção de mudas de aroeira vermelha. Scientia Agrária, v. 9, n. 1, p. 27-33, 2008. DOI: 10.5380/rsa.v9i1.9898. DOI: https://doi.org/10.5380/rsa.v9i1.9898
Carvajal, L. H. et al. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological Control, v. 51, p. 409-416, 2009. DOI: 10.1016/j.biocontrol.2009.07.018. DOI: https://doi.org/10.1016/j.biocontrol.2009.07.018
Carvalho Filho, M. R. et al. Avaliação de isolados de Trichoderma na promoção de crescimento, produção de acido indolacético in vitro e colonização endofítica de mudas de eucalipto. Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia, 2008. 16 p. (Embrapa Recursos Genéticos e Biotecnologia. Documentos, 226).
Chagas, L. F. B. et al. Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Brazillian Journal of Botany, v. 39, n. 2, p. 437-445, 2016. DOI: 10.1007/s40415-015-0247-6. DOI: https://doi.org/10.1007/s40415-015-0247-6
Chen, L. H. et al. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Applied Microbiology and Biotechnology, v. 89, p. 1653-1663, 2011. DOI: 10.1007/s00253-010-2948-x. DOI: https://doi.org/10.1007/s00253-010-2948-x
Daniel, O. et al. Aplicação de fósforo em mudas de Acacia mangium WILLD. Revista Árvore, v. 21, n. 2, p. 163-168, 1997.
Dent, D. H. & Wright, S. J. The future of tropical species in secondary forest: a quantitative review. Biological Conservation, v. 142, p. 2833-2843, 2009. DOI: 10.1016/j.biocon.2009.05.035. DOI: https://doi.org/10.1016/j.biocon.2009.05.035
Dickson, A. et al. Quality appraisal of white spruce and white pine seedling stock in nurseries. Forestry Chronicle, v. 36, p. 10-13, 1960. DOI: 10.5558/tfc36010-1. DOI: https://doi.org/10.5558/tfc36010-1
Donoso, E. et al. Efecto de Trichoderma harzianum y compost sobre el crecimiento de plántulas de Pinus radiata em viveiro. Bosque, v. 29, n. 1, p. 52-57, 2008. DOI: 10.4067/S0717-92002008000100006. DOI: https://doi.org/10.4067/S0717-92002008000100006
Edwards, C. A. et al. Vermiculture technology: earthworms, organic wastes, and environmental management. New York: CRC Press, 2010. DOI: 10.1201/b10453. DOI: https://doi.org/10.1201/b10453
Esposito, E. & Silva, M. Systematics and environmental application of the genus Trichoderma. Critical Reviews in Microbiology, v. 24, n. 2, p. 89-98, 1998. DOI: 10.1080/10408419891294190. DOI: https://doi.org/10.1080/10408419891294190
Ferreira, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011. DOI: 10.1590/S1413-70542011000600001. DOI: https://doi.org/10.1590/S1413-70542011000600001
Gravel, V. et al. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride possible role of indole acetic acid (IAA). Soil Biology & Biochemistry, v. 39, p. 1968-1977, 2007. DOI: 10.1016/j.soilbio.2007.02.015. DOI: https://doi.org/10.1016/j.soilbio.2007.02.015
Harman, G. E. et al. Trichoderma species: opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, v. 2, n. 1, p. 43-56, 2004. DOI: 10.1038/nrmicro797. DOI: https://doi.org/10.1038/nrmicro797
Hunt, G. A. Effect of styroblock design and cooper treatment on morphology of conifer seedlings. In: Rose, R. et al. (Ed.). Proceedings"¦ Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1990. p. 218-222. (Roseburg, OR. General Technical Report RM-200).
Lorenzi, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 4. ed. Nova Odessa: Plantarum, 2013. v. 2. 384 p.
Lourenço, N. M. G. & Coelho, S. I. D. Vermicompostagem e qualidade ambiental. São Bartolomeu de Messines, 2009.
Maji, D. et al. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Applied Soil Ecology, v. 110, p. 97-108, 2017. DOI: 10.1016/j.apsoil.2016.10.008. DOI: https://doi.org/10.1016/j.apsoil.2016.10.008
Manual de adubação e de calagem para os estados do Rio Grande do Sul e de Santa Catarina. SBCS/NRS. Porto Alegre: Sociedade Brasileira de Ciência do Solo, Núcleo Regional Sul, Comissão de Química e Fertilidade do Solo, 2004. 400 p.
Masciandaro, G. et al. Fertigation with wastewater and vermicompost: soil biochemical and agronomic implications. Pedosphere, v. 24, n. 5, p. 625-634, 2014. DOI: 10.1016/S1002-0160(14)60048-5. DOI: https://doi.org/10.1016/S1002-0160(14)60048-5
Muthukumar, T. & Udaiyan, K. Growth response and nutrient utilization of Casuarina equisetifolia seedlings inoculated with bioinoculants under tropical nursery conditions. New Forests, v. 40, n. 1, p. 101-118, 2010. DOI: 10.1007/s11056-009-9186-z. DOI: https://doi.org/10.1007/s11056-009-9186-z
Ravindran, B. et al. Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste. Bioresource Technology, v. 217, p. 200-204, 2016. DOI: 10.1016/j.biortech.2016.03.032. DOI: https://doi.org/10.1016/j.biortech.2016.03.032
Resende, M. P. et al. Phosphate solubilization and phytohormone production by endophytic and rhizosphere Trichoderma isolates of guanandi (Calophyllum brasiliense Cambess). African Journal of Microbiology Research, v. 8, n. 27, p. 2616-2623, 2014. DOI: 10.1007/s40415-015-0247-6. DOI: https://doi.org/10.5897/AJMR2014.6633
Rodda, M. R. C. et al. Estímulo no crescimento e na hidrólise de ATP em raízes de alface tratadas com humatos de vermicomposto. I- Efeito da concentração. Revista Brasileira de Ciência do Solo, v. 30, n. 4, p. 649-656, 2006. DOI: 10.1590/S0100-06832006000400005. DOI: https://doi.org/10.1590/S0100-06832006000400005
Rovedder, A. P. M. et al. Potential medicinal use of forest species of the Deciduous Seasonal Forest from Atlantic Forest Biome, South Brazil. Brazilian Archives of Biology and Technology, v. 59, p. 1-11, 2016. DOI: 10.1590/1678-4324-2016150329. DOI: https://doi.org/10.1590/1678-4324-2016150329
Santos, H. A. et al. Associação de isolados de Trichoderma ssp. E ácido indol - 3- butírico (AIB) na promoção de enraizamento de estacas e crescimento de maracujazeiro. Bioscience Journal, v. 26, n. 6, p. 966-972, 2010.
Shoresh, M. et al. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, v. 48, p. 21-43, 2010. DOI: 10.1146/annurev-phyto-073009-114450. DOI: https://doi.org/10.1146/annurev-phyto-073009-114450
Sistema Brasileiro de Classificação de Solos. Brasília, DF: Embrapa Produção de Informação; Rio de Janeiro: Embrapa Solos, 1999.
Souza, C. A. M. et al. Crescimento em campo de espécies florestais em diferentes condições de adubação. Ciência Florestal, v. 16, n. 3, p. 243-249, 2006. DOI: 10.5902/198050981905. DOI: https://doi.org/10.5902/198050981905
Steffen, G. P. K. et al. Húmus de esterco bovino e casca de arroz carbonizada como substratos para a produção de mudas de boca-de-leão. Acta Zoológica Mexicana, v. 26, nesp. 2, p. 345-357, 2010. DOI: https://doi.org/10.21829/azm.2010.262899
Steffen, G. P. K. et al. Utilização de vermicomposto como substrato na produção de mudas de Eucalyptus grandis e Corymbia citriodora. Pesquisa Florestal Brasileira, v. 3, n. 36, p. 75-82, 2011. DOI: 10.4336/2011.pfb.31.66.75. DOI: https://doi.org/10.4336/2011.pfb.31.66.75
Steffen, G. P. K. & Maldaner, J. Methodology for Trichoderma sp. multiplication in organic substrates. International Journal of Current Research, v. 9, n. 1, p. 44564-44567, 2017.
Taiz, L. & Zeiger, E. Fisiologia vegetal. 5. ed. Porto Alegre: ArtMed, 2013. 954 p.
Tedesco, J. et al. Análise de solo, planta e outros materiais. 2. ed. Porto Alegre: UFRGS, 1995. 174 p.
Tedesco, N. et al. Influência do vermicomposto na produção de mudas de caroba (Jacaranda micrantha Chamisso). Revista Árvore, v. 23, n. 1, p.1-8, 1999.
Tsahouridou, P. C. & Thanassoulopoulos, C. C. Proliferation of Trichoderma koningii in the tomato rhizosphere and the suppression of damping-off by Sclerotium rolfsii. Soil Biology & Biochemistry, v. 34, n. 6, p. 767-776, 2002. DOI: 10.1016/S0038-0717(02)00006-8. DOI: https://doi.org/10.1016/S0038-0717(02)00006-8
Urrestarazu, M. et al. Wetting agent effect on physical properties of new and reused rockwool and coconut coir waste. Scientia Horticulturae, v. 116, n. 1, p. 104-108, 2008. DOI: 10.1016/j.scienta.2007.10.030. DOI: https://doi.org/10.1016/j.scienta.2007.10.030
Zaller, J. G. Vermicompost as a substitute for peat in potting media: effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Scientia Horticulturae, v. 112, n. 2, p. 191-199, 2007. DOI: 10.1016/j.scienta.2006.12.023. DOI: https://doi.org/10.1016/j.scienta.2006.12.023
Zeilinger, S. et al. Secondary metabolism in Trichoderma: chemistry meets genomics. Fungal Biology Reviews, v. 30, n. 2, p. 74-90, 2016. DOI: 10.1016/j.fbr.2016.05.001. DOI: https://doi.org/10.1016/j.fbr.2016.05.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Patrícia Pinheiro Amaral, Gerusa Pauli Kist Steffen, Joseila Maldaner, Evandro Luiz Missio, Cleber Witt Saldanha

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
PFB reserves the right to edit manuscripts to correct grammar/spelling, improve clarity, and comply with the journal’s standards while maintaining the style of the authors.
The final version will be sent to the corresponding author for approval.
Published articles become the property of PFB.
Manuscripts may be used after publication without prior authorization from PFB, as long as the journal is credited.
Warning: figures published in PFB may only be reused with prior authorization from Embrapa Forestry.
All content in PFB is licensed under Creative Commons attribution (type BY-NC-ND).
The opinions and concepts expressed in manuscripts are the sole responsibility of their respective authors and not PFB.


