Nondestructive evaluation of medium density particleboard by Stress Wave Timer method
DOI:
https://doi.org/10.4336/2017.pfb.37.91.1071Keywords:
Eucalyptus, Pinus, Sugar cane bagasseAbstract
The objective of this study was to verify the efficiency of nondestructive evaluation of wood panels mechanical properties by stress wave timer method in medium density particle board (MDP) from pine. Were evaluated industrial MDP panels from eucalypts (5) and pine (5), both from two national companies, and five panels from sugarcane bagasse imported from China. Stress wave timer method was used for nondestructive evaluation. The modulus of elasticity (MOEd) obtained by stress wave timer method was confronted with MOE and flexural strength (MOR) to bending tests from conventional assays. Measures in length and width directions were performed in each panel. Nondestructive method was effective only for sugar cane bagasse panels, so it can be used to predict MOE and MOR for this type of panel.Downloads
References
Almeida, D. H. de et al. Determinação da rigidez de Pinus elliottii em diferentes teores de umidade por meio de ensaios mecânicos não destrutivos. Scientia Forestalis, v. 44, n. 110, p. 303-309, 2016. DOI: 10.18671/scifor.v44n110.03. DOI: https://doi.org/10.18671/scifor.v44n110.03
Arruda, L. M. et al. Lignocellulosic composites from brazilian giant Bamboo (Guadua magna) part 1: Properties of resin bonded particleboards. Maderas Ciencia y Tecnologia, v. 13, n. 1, p. 49-58, 2011. DOI: 10.4067/S0718-221X2011000100005. DOI: https://doi.org/10.4067/S0718-221X2011000100005
Associação Brasileira de Normas Técnicas. NBR 14810-1: chapas de madeira aglomerada: terminologia. Rio de Janeiro, 2006a. 5 p. Parte 1.
Associação Brasileira de Normas Técnicas. NBR 14810-3: chapas de madeira aglomerada: métodos de ensaio. Rio de Janeiro, 2006b.
Bodig, J. The process of NDE research for wood and wood composites. The e-Journal of Nondestructive Testing, v. 6, n. 3, 2001. Disponível em: <http://www.ndt.net/article/v06n03/bodig/bodig.htm>. Acesso em: 21 set. 2015. Trabalho apresentado no International Symposium on Nondestructive Testing of Wood, 12., 2001, Sopron.
Bucur, V. Acoustics of wood. 2. ed. Basiléia: Birkhäuser, 2006. 393 p. DOI: https://doi.org/10.1007/3-540-30594-7
Chauhan, S. & Sethy, A. Differences in dynamic modulus of elasticity determined by three vibration methods and their relationship with static modulus of elasticity. Maderas, Ciencia y Tecnología, v. 18, n. 2, 2016. DOI: S0718-221X2016005000034. DOI: https://doi.org/10.4067/S0718-221X2016005000034
European Committee for Standardization. EN 312: particleboard: specifications. Bruxelas, 1993.
Freire, C. S. et al. Avaliação do módulo de elasticidade dinâmico de diferentes tipos de painéis. In: ENCONTRO BRASILEIRO EM MADEIRAS E EM ESTRUTURAS DE MADEIRA, 13., 2012, Vitória. Anais... Vitória: [s.n.], 2012. CD-ROM.
Gaff, M. et al. Bending characteristics of hardwood lamellae in the elastic region. Composites Part B: Engineering, v. 116, n. 1, p. 61-75, 2017. DOI: j.compositesb.2016.12.058. DOI: https://doi.org/10.1016/j.compositesb.2016.12.058
Han, G. et al. Stress-wave velocity of wood-based panels: effect of moisture, product type, and material direction. Forest Products Journal, v. 56, n. l, p. 28-33, 2006.
Indústria Brasileira de Árvores. IBÁ: Indústria Brasileira de Árvores. Brasília, DF, 2015. Relatório Ibá 2015. Disponível em: <http://iba.org/images/shared/iba_2015.pdf>. Acesso em: 15 jun. 2017.
Melo, R. R. & Del Menezzi, C. S. Estimativas das propriedades físico-mecânicas de compostos LVL confeccionados com Paricá por meio de ultrassom. Ciência Florestal, v. 26, n. 1, p. 263-272, 2016. DOI: 10.5902/1980509821118. DOI: https://doi.org/10.5902/1980509821118
Mendes, R. F. et al. Determinação do módulo de elasticidade de painéis aglomerados por Stress Wave Timer. Floresta e Ambiente, v. 19, n. 2, p. 117-122, 2012. DOI: 10.4322/floram.2012.013. DOI: https://doi.org/10.4322/floram.2012.013
Oliveira, S. L. et al. Particleboard panels made from sugarcane bagasse: characterization for use in the furniture industry. Materials Research, v. 19, n. 4, 2016. DOI: 10.1590/1980-5373-MR-2015-0211. DOI: https://doi.org/10.1590/1980-5373-MR-2015-0211
Pellerin, R. F. & Ross, J. R. Nondestructive evaluation of wood. Madison: Forest Products Laboratory, 2002. 210 p.
Protásio, T. P. et al. Correlações entre as propriedades físicas e mecânicas de painéis aglomerados de diferentes espécies de Eucalyptus. Floresta e Ambiente, v. 19, n. 2, p. 123-132. DOI: 10.4322/floram.2012.014. DOI: https://doi.org/10.4322/floram.2012.014
Stangerlin, D. M. et al. Estimativa do módulo de elasticidade em painéis aglomerados por meio de emissão de ondas ultra-sonoras. Revista Eletrônica de Materiais e Processos, v. 5, n. 3, p. 17-22, 2010.
Targa, L. A. et al. Avaliação do módulo de elasticidade da madeira com uso de método não-destrutivo de vibração transversal. Engenharia Agrícola, v. 25, n. 2, p. 291-299, 2005. DOI: 10.1590/S0100-69162005000200001. DOI: https://doi.org/10.1590/S0100-69162005000200001
Vun, R. Y. et al. Through-thickness ultrasonic characterization of wood and agricultural fibre composites. Forest Products Journal, v. 54, n. 12, p. 233-239, 2004.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
PFB reserves the right to edit manuscripts to correct grammar/spelling, improve clarity, and comply with the journal’s standards while maintaining the style of the authors.
The final version will be sent to the corresponding author for approval.
Published articles become the property of PFB.
Manuscripts may be used after publication without prior authorization from PFB, as long as the journal is credited.
Warning: figures published in PFB may only be reused with prior authorization from Embrapa Forestry.
All content in PFB is licensed under Creative Commons attribution (type BY-NC-ND).
The opinions and concepts expressed in manuscripts are the sole responsibility of their respective authors and not PFB.